# Ex 7.2, 5 - Chapter 7 Class 12 Integrals (Term 2)

Last updated at Aug. 20, 2021 by

Last updated at Aug. 20, 2021 by

Transcript

Ex 7.2, 5 (Method 1) Integrate the function: sin + cos + Step 1: Let sin + = Differentiating both sides . . . cos ( + ) . + = cos ( + ) +0 = cos ( + ) . = = . cos + Step 2: Integrating the function sin ( + ) cos ( + ) . Putting = + & dx = . cos + = . cos + . . cos + = 1 . = 1 1+1 1 +1 + 1 = 1 2 2 + 1 = 2 2 + 1 = 2 2 + = sin 2 + 2 + We know that cos 2 =1 2 sin 2 cos 2 + =1 2 sin 2 + 2 sin 2 + =1 cos 2 + sin 2 + = 1 2 1 2 cos 2 + Putting in (1) = 1 2 2 1 2 2 cos 2 + + = + + Ex 7.2, 5 (Method 2) Integrate the function: sin ( + ) cos ( + ) Step 1: Taking the given function sin + cos + = 1 2 sin 2 + = 1 2 sin 2 +2 Step 2: Let 2 +2 = Let 2 +2 = Differentiating both sides . . . 2 +0= 2 = 2 . = = 2 Step 3: Integrating the function sin ( + ) cos ( + ) . = 1 2 sin (2 +2 ) . Putting =2 +2 & = 2 = 1 2 sin ( ) . 2 = 1 4 sin ( ) . = 1 4 cos + 1 = 1 4 . cos + 1 4 = 1 4 . cos + = 1 4 . cos (2 +2 ) + = . ( + ) +

Ex 7.2

Ex 7.2, 1

Ex 7.2, 2

Ex 7.2, 3 Important

Ex 7.2, 4

Ex 7.2, 5 Important You are here

Ex 7.2, 6

Ex 7.2, 7 Important

Ex 7.2, 8

Ex 7.2, 9

Ex 7.2, 10 Important

Ex 7.2, 11 Important

Ex 7.2, 12

Ex 7.2, 13

Ex 7.2, 14 Important

Ex 7.2, 15

Ex 7.2, 16

Ex 7.2, 17

Ex 7.2, 18

Ex 7.2, 19 Important

Ex 7.2, 20 Important

Ex 7.2, 21

Ex 7.2, 22 Important

Ex 7.2, 23

Ex 7.2, 24

Ex 7.2, 25

Ex 7.2, 26 Important

Ex 7.2, 27

Ex 7.2, 28

Ex 7.2, 29 Important

Ex 7.2, 30

Ex 7.2, 31

Ex 7.2, 32 Important

Ex 7.2, 33 Important

Ex 7.2, 34 Important

Ex 7.2, 35

Ex 7.2, 36 Important

Ex 7.2, 37

Ex 7.2, 38 (MCQ) Important

Ex 7.2, 39 (MCQ) Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.