# Ex 7.2, 5 - Chapter 7 Class 12 Integrals

Last updated at April 16, 2024 by Teachoo

Ex 7.2

Ex 7.2, 1

Ex 7.2, 2

Ex 7.2, 3 Important

Ex 7.2, 4

Ex 7.2, 5 Important You are here

Ex 7.2, 6

Ex 7.2, 7 Important

Ex 7.2, 8

Ex 7.2, 9

Ex 7.2, 10 Important

Ex 7.2, 11 Important

Ex 7.2, 12

Ex 7.2, 13

Ex 7.2, 14 Important

Ex 7.2, 15

Ex 7.2, 16

Ex 7.2, 17

Ex 7.2, 18

Ex 7.2, 19 Important

Ex 7.2, 20 Important

Ex 7.2, 21

Ex 7.2, 22 Important

Ex 7.2, 23

Ex 7.2, 24

Ex 7.2, 25

Ex 7.2, 26 Important

Ex 7.2, 27

Ex 7.2, 28

Ex 7.2, 29 Important

Ex 7.2, 30

Ex 7.2, 31

Ex 7.2, 32 Important

Ex 7.2, 33 Important

Ex 7.2, 34 Important

Ex 7.2, 35

Ex 7.2, 36 Important

Ex 7.2, 37

Ex 7.2, 38 (MCQ) Important

Ex 7.2, 39 (MCQ) Important

Last updated at April 16, 2024 by Teachoo

Ex 7.2, 5 (Method 1) Integrate the function: sin + cos + Step 1: Let sin + = Differentiating both sides . . . cos ( + ) . + = cos ( + ) +0 = cos ( + ) . = = . cos + Step 2: Integrating the function sin ( + ) cos ( + ) . Putting = + & dx = . cos + = . cos + . . cos + = 1 . = 1 1+1 1 +1 + 1 = 1 2 2 + 1 = 2 2 + 1 = 2 2 + = sin 2 + 2 + We know that cos 2 =1 2 sin 2 cos 2 + =1 2 sin 2 + 2 sin 2 + =1 cos 2 + sin 2 + = 1 2 1 2 cos 2 + Putting in (1) = 1 2 2 1 2 2 cos 2 + + = + + Ex 7.2, 5 (Method 2) Integrate the function: sin ( + ) cos ( + ) Step 1: Taking the given function sin + cos + = 1 2 sin 2 + = 1 2 sin 2 +2 Step 2: Let 2 +2 = Let 2 +2 = Differentiating both sides . . . 2 +0= 2 = 2 . = = 2 Step 3: Integrating the function sin ( + ) cos ( + ) . = 1 2 sin (2 +2 ) . Putting =2 +2 & = 2 = 1 2 sin ( ) . 2 = 1 4 sin ( ) . = 1 4 cos + 1 = 1 4 . cos + 1 4 = 1 4 . cos + = 1 4 . cos (2 +2 ) + = . ( + ) +