




Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important You are here
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at Aug. 20, 2021 by Teachoo
Ex 7.2, 5 (Method 1) Integrate the function: sin + cos + Step 1: Let sin + = Differentiating both sides . . . cos ( + ) . + = cos ( + ) +0 = cos ( + ) . = = . cos + Step 2: Integrating the function sin ( + ) cos ( + ) . Putting = + & dx = . cos + = . cos + . . cos + = 1 . = 1 1+1 1 +1 + 1 = 1 2 2 + 1 = 2 2 + 1 = 2 2 + = sin 2 + 2 + We know that cos 2 =1 2 sin 2 cos 2 + =1 2 sin 2 + 2 sin 2 + =1 cos 2 + sin 2 + = 1 2 1 2 cos 2 + Putting in (1) = 1 2 2 1 2 2 cos 2 + + = + + Ex 7.2, 5 (Method 2) Integrate the function: sin ( + ) cos ( + ) Step 1: Taking the given function sin + cos + = 1 2 sin 2 + = 1 2 sin 2 +2 Step 2: Let 2 +2 = Let 2 +2 = Differentiating both sides . . . 2 +0= 2 = 2 . = = 2 Step 3: Integrating the function sin ( + ) cos ( + ) . = 1 2 sin (2 +2 ) . Putting =2 +2 & = 2 = 1 2 sin ( ) . 2 = 1 4 sin ( ) . = 1 4 cos + 1 = 1 4 . cos + 1 4 = 1 4 . cos + = 1 4 . cos (2 +2 ) + = . ( + ) +