Ex 7.2, 24 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24 You are here
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 24 2 cos𝑥 − 3 sin𝑥6 cos𝑥 + 4 sin𝑥 Step 1: Let 6 cos𝑥 + 4 sin𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 −6 sin𝑥 + 4 co𝑠𝑥= 𝑑𝑡𝑑𝑥 4 cos𝑥−6 sin𝑥𝑑𝑥 =𝑑𝑡 𝑑𝑥 = 𝑑𝑡4 cos𝑥 − 6 sin𝑥 Step 2: Integrating the function 2 cos𝑥 − 3 sin𝑥6 cos𝑥 + 4 sin𝑥 . 𝑑𝑥 Putting 6 𝑐𝑜𝑠𝑥+4 𝑠𝑖𝑛𝑥=𝑡 & 𝑑𝑥= 𝑑𝑡4 cos𝑥 − 6 sin𝑥 = 2 cos𝑥 − 3 sin𝑥𝑡 . 𝑑𝑥 = 2 cos𝑥 − 3 sin𝑥𝑡 . 𝑑𝑡4 cos𝑥 − 6 sin𝑥 = 2 cos𝑥 − 3 sin𝑥𝑡 . 𝑑𝑡2 2 cos𝑥 − 3 sin𝑥 = 12𝑡. 𝑑𝑡 = 12 𝑑𝑡𝑡 = 12 log 𝑡+𝐶1 = 12 log 4 sin𝑥+6 cos𝑥+𝐶1 = 12 log 2 2 sin𝑥+3 cos𝑥+𝐶1 = 12 log 2+𝑙𝑜𝑔 2 sin𝑥+3 cos𝑥+𝐶1 = 12 log 2+ 12 𝑙𝑜𝑔 2 sin𝑥+3 cos𝑥+𝐶1 = 𝟏𝟐 𝒍𝒐𝒈 𝟐 𝒔𝒊𝒏𝒙+𝟑 𝒄𝒐𝒔𝒙+𝑪