Ex 7.2, 3 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important You are here
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 3 Integrate the function: 1/(𝑥 + 𝑥 log𝑥 ) 1/(𝑥 + 𝑥 log𝑥 )=1/𝑥(1 + log𝑥 ) Step 1: Let 1+log𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0 + 1/𝑥=𝑑𝑡/𝑑𝑥 1/𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑥 𝑑𝑡 Step 2: Integrating function ∫1▒1/(𝑥 + 𝑥 log𝑥 ) .𝑑𝑥 =∫1▒1/(𝑥 (1 + log𝑥 ) ) .𝑑𝑥" " Putting 1+log𝑥 & 𝑑𝑥=𝑥 𝑑𝑡 = ∫1▒1/(𝑥(𝑡)) 𝑑𝑡.𝑥 = ∫1▒1/𝑡 𝑑𝑡 = 𝑙𝑜𝑔|𝑡|+𝐶 Putting back 𝑡 =1+𝑙𝑜𝑔𝑥 = 𝒍𝒐𝒈|𝟏+𝐥𝐨𝐠𝒙 |+𝑪 (𝑈𝑠𝑖𝑛𝑔∫1▒〖1/𝑥 𝑑𝑥〗=log|𝑥|+𝐶)