
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important You are here
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.2, 3 Integrate the function: 1/(𝑥 + 𝑥 log𝑥 ) 1/(𝑥 + 𝑥 log𝑥 )=1/𝑥(1 + log𝑥 ) Step 1: Let 1+log𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0 + 1/𝑥=𝑑𝑡/𝑑𝑥 1/𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑥 𝑑𝑡 Step 2: Integrating function ∫1▒1/(𝑥 + 𝑥 log𝑥 ) .𝑑𝑥 =∫1▒1/(𝑥 (1 + log𝑥 ) ) .𝑑𝑥" " Putting 1+log𝑥 & 𝑑𝑥=𝑥 𝑑𝑡 = ∫1▒1/(𝑥(𝑡)) 𝑑𝑡.𝑥 = ∫1▒1/𝑡 𝑑𝑡 = 𝑙𝑜𝑔|𝑡|+𝐶 Putting back 𝑡 =1+𝑙𝑜𝑔𝑥 = 𝒍𝒐𝒈|𝟏+𝐥𝐨𝐠𝒙 |+𝑪 (𝑈𝑠𝑖𝑛𝑔∫1▒〖1/𝑥 𝑑𝑥〗=log|𝑥|+𝐶)