Integration Full Chapter Explained - Integration Class 12 - Everything you need

Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.2, 37 Integrate (π₯3 π ππ (tan^(β1)β‘γπ₯^4 γ))/(1 + π₯8) β«1βγ" " (π₯3 π ππ (tan^(β1)β‘γπ₯^4 γ ))/(1 + π₯8)γ . ππ₯ Let tan^(β1)β‘γπ₯^4 γ= π‘ Differentiating both sides π€.π.π‘.π₯ 1/(1 +(π₯^4 )^2 ). π(π₯^4 )/ππ₯= ππ‘/ππ₯ 1/(1 +π₯^8 ). 4π₯^3=ππ‘/ππ₯ (4π₯^3)/(1 + π₯^8 )=ππ‘/ππ₯ (Using (π(γπ‘ππγ^(β1)β‘π₯))/ππ₯=1/(1 + π₯^2 ) and chain rule ) ππ₯=(1 + π₯^8)/(4π₯^3 ) . ππ‘ Now, our function becomes β«1βγ" " (π₯3 π ππ (tan^(β1)β‘γπ₯^4 γ ))/(1 + π₯8)γ . ππ₯ Putting γπ‘ππγ^(β1)β‘γπ₯^4 γ=π‘ & ππ₯=(1 + π₯^8)/(4π₯^3 ) . ππ‘ = β«1βγ" " (π₯^3 π ππ (π‘))/(1 + π₯^8 )γ. (1 + π₯^8)/(4π₯^3 ) ππ‘" " = β«1βγ" " sinβ‘π‘/4γ ππ‘" " = 1/4 β«1βsinβ‘π‘ . ππ‘" " = (β1)/4 cosβ‘π‘+ πΆ = (βπ)/π γπππ γβ‘(γπππ§γ^(βπ)β‘γπ^π γ )+πͺ (Using π‘=γπ‘ππγ^(β1)β‘γπ₯^4 γ)
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37 Important You are here
Ex 7.2, 38 Important
Ex 7.2, 39 Important
About the Author