Ex 7.2, 37 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37 You are here
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 37 Integrate (π₯3 π ππ (tan^(β1)β‘γπ₯^4 γ))/(1 + π₯8) β«1βγ" " (π₯3 π ππ (tan^(β1)β‘γπ₯^4 γ ))/(1 + π₯8)γ . ππ₯ Let tan^(β1)β‘γπ₯^4 γ= π‘ Differentiating both sides π€.π.π‘.π₯ 1/(1 +(π₯^4 )^2 ). π(π₯^4 )/ππ₯= ππ‘/ππ₯ 1/(1 +π₯^8 ). 4π₯^3=ππ‘/ππ₯ (4π₯^3)/(1 + π₯^8 )=ππ‘/ππ₯ (Using (π(γπ‘ππγ^(β1)β‘π₯))/ππ₯=1/(1 + π₯^2 ) and chain rule ) ππ₯=(1 + π₯^8)/(4π₯^3 ) . ππ‘ Now, our function becomes β«1βγ" " (π₯3 π ππ (tan^(β1)β‘γπ₯^4 γ ))/(1 + π₯8)γ . ππ₯ Putting γπ‘ππγ^(β1)β‘γπ₯^4 γ=π‘ & ππ₯=(1 + π₯^8)/(4π₯^3 ) . ππ‘ = β«1βγ" " (π₯^3 π ππ (π‘))/(1 + π₯^8 )γ. (1 + π₯^8)/(4π₯^3 ) ππ‘" " = β«1βγ" " sinβ‘π‘/4γ ππ‘" " = 1/4 β«1βsinβ‘π‘ . ππ‘" " = (β1)/4 cosβ‘π‘+ πΆ = (βπ)/π γπππ γβ‘(γπππ§γ^(βπ)β‘γπ^π γ )+πͺ (Using π‘=γπ‘ππγ^(β1)β‘γπ₯^4 γ)