Ex 7.2, 33 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important You are here
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 33 Integrate 1/(1 β π‘ππβ‘π₯ ) β«1β1/(1 β tanβ‘π₯ ) ππ₯ = β«1β1/(1 β sinβ‘π₯/cosβ‘π₯ ) ππ₯ = β«1β1/(γcosβ‘π₯ β sinγβ‘π₯/cosβ‘π₯ ) ππ₯ = β«1βcosβ‘π₯/γcosβ‘π₯ β sinγβ‘π₯ ππ₯ = β«1β(2 cosβ‘π₯)/2(γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = β«1β(cosβ‘π₯ + cosβ‘π₯)/2(γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = β«1β(cosβ‘π₯ + cosβ‘π₯ + sinβ‘π₯ β sinβ‘π₯)/2(γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = β«1β(cosβ‘π₯ β sinβ‘π₯ + cosβ‘π₯ + sinβ‘π₯)/2(γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = 1/2 β«1β((cosβ‘π₯ β sinβ‘π₯ + cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = 1/2 β«1β((cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ +(cosβ‘π₯ β sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = 1/2 β«1β(1+ (cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ ) ππ₯ = 1/2 β«1βππ₯ + 1/2 β«1β(cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ ππ₯ (Adding & subtracting π ππβ‘π₯ in numerator) = π₯/2+1/2 β«1β(cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ ππ₯+πΆ_1 Solving π1 I1 = β«1β(cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ .ππ₯ Let cosβ‘π₯ β sinβ‘π₯=π‘ Differentiating both sides π€.π.π‘.π₯ γγ βπ ππγβ‘π₯βπππ γβ‘π₯=ππ‘/ππ₯ β(γπ ππβ‘π₯+πππ γβ‘π₯ )=ππ‘/ππ₯ ππ₯=ππ‘/(β(γsinβ‘π₯ β cosγβ‘π₯ ) ) Thus, our equation becomes I1 = β«1β(cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ . ππ₯ I1 = β«1β(cosβ‘π₯ β sinβ‘π₯)/π‘ . ππ‘/(β(γsinβ‘π₯ β cosγβ‘π₯ ) ) I1 = β1β«1βππ‘/π‘ I1 = βlogβ‘|π‘|+πΆ2 I1 = βlogβ‘|cosβ‘π₯βsinβ‘π₯ |+πΆ2 (Using β«1β1/π₯. ππ₯=πππβ‘|π₯|) (Using γγπ‘=πππ γβ‘π₯βπ ππγβ‘π₯ ) Putting the value of I1 in (1) β΄ β«1βγ1/(1 + tanβ‘π₯ ) " " γ= π₯/2+1/2 β«1β(cosβ‘π₯ + sinβ‘π₯)/γcosβ‘π₯ β sinγβ‘π₯ ππ₯+πΆ_1 = π₯/2+1/2(βπ₯π¨π β‘γ |πππβ‘πβπππβ‘π |γ)+πΆ2/2+πΆ1 = π/π βπ/π πππβ‘γ |πππβ‘πβπππβ‘π |γ+πͺ