Slide1.JPG

Slide2.JPG
Slide3.JPG
Slide4.JPG
Slide5.JPG Slide6.JPG  


Transcript

Misc 18 Integrate the function 1/√(sin^3⁑π‘₯ sin⁑(π‘₯ + 𝛼) ) Solving sin^3⁑π‘₯ sin⁑(π‘₯ + 𝛼) =sin^3⁑π‘₯ [sin⁑π‘₯ cos⁑𝛼+cos⁑π‘₯.sin⁑𝛼 ] =γ€–sin^4 π‘₯〗⁑cos⁑𝛼 +cos⁑π‘₯.sin^3⁑π‘₯ sin⁑𝛼 =γ€–sin^4 π‘₯〗⁑cos⁑𝛼 +cos⁑π‘₯.sin^3⁑π‘₯ sin⁑𝛼×sin⁑π‘₯/sin⁑π‘₯ =sin^4⁑π‘₯ [cos⁑𝛼+cos⁑π‘₯ . sin⁑𝛼.1/sin⁑π‘₯ ] Hence Using 𝑠𝑖𝑛⁑(𝐴+𝐡)=𝑠𝑖𝑛⁑𝐴 π‘π‘œπ‘ β‘π΅+π‘π‘œπ‘ β‘π΄.𝑠𝑖𝑛⁑𝐡 =sin^4⁑π‘₯ [cos⁑𝛼+cos⁑π‘₯/sin⁑π‘₯ . sin⁑𝛼 ] =sin^4⁑π‘₯ [cos⁑𝛼+cot⁑π‘₯ sin⁑𝛼 ] Therefore sin^3⁑π‘₯ sin⁑(π‘₯+𝛼)=sin^4⁑π‘₯ (cos⁑𝛼+cot⁑π‘₯.sin⁑𝛼 ) Now ∫1β–’1/√(sin^3⁑π‘₯ sin⁑(π‘₯ + 𝛼) ) 𝑑π‘₯ =∫1β–’1/√(sin^4⁑π‘₯ (cos⁑𝛼 + cot⁑π‘₯ . sin⁑𝛼 ) ) 𝑑π‘₯ =∫1β–’γ€–1/√(sin^4⁑π‘₯ )Γ—1/√(cos⁑𝛼 + cot⁑π‘₯ . sin⁑𝛼 )γ€— 𝑑π‘₯ =∫1β–’γ€–1/sin^2⁑π‘₯ Γ—1/√(cos⁑𝛼 + cot⁑π‘₯ . sin⁑𝛼 )γ€— 𝑑π‘₯ Let cos⁑𝛼+cot⁑π‘₯. sin⁑𝛼=𝑑 Diff w.r.t. x 𝑑(cos⁑𝛼 + cot⁑π‘₯ sin⁑𝛼 )/𝑑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑(cos⁑𝛼 )/𝑑π‘₯+sin⁑𝛼 𝑑(cot⁑π‘₯ )/𝑑π‘₯=𝑑𝑑/𝑑π‘₯ =∫1β–’γ€–1/√(sin^4⁑π‘₯ )Γ—1/√(cos⁑𝛼 + cot⁑π‘₯ . sin⁑𝛼 )γ€— 𝑑π‘₯ =∫1β–’γ€–1/sin^2⁑π‘₯ Γ—1/√(cos⁑𝛼 + cot⁑π‘₯ . sin⁑𝛼 )γ€— 𝑑π‘₯ Let cos⁑𝛼+cot⁑π‘₯. sin⁑𝛼=𝑑 Diff w.r.t. x 𝑑(cos⁑𝛼 + cot⁑π‘₯ sin⁑𝛼 )/𝑑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑(cos⁑𝛼 )/𝑑π‘₯+sin⁑𝛼 𝑑(cot⁑π‘₯ )/𝑑π‘₯=𝑑𝑑/𝑑π‘₯ 0+sin⁑𝛼 (βˆ’π‘π‘œπ‘ π‘’π‘^2 π‘₯)=𝑑𝑑/𝑑π‘₯ βˆ’sin⁑𝛼 π‘π‘œπ‘ π‘’π‘^2 π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=𝑑𝑑/(βˆ’sin⁑𝛼 π‘π‘œπ‘ π‘’π‘^2 π‘₯) 𝑑π‘₯=1/(βˆ’sin⁑𝛼 ) . 1/(π‘π‘œπ‘ π‘’π‘^2 π‘₯) . 𝑑𝑑 𝑑π‘₯=1/(βˆ’sin⁑𝛼 ) . sin^2⁑π‘₯. 𝑑𝑑 Now our equation becomes ∫1β–’1/(sin^2⁑π‘₯ √(cos⁑𝛼 + cot⁑π‘₯ sin⁑𝛼 ) ) 𝑑π‘₯ =∫1β–’1/(sin^2⁑π‘₯ βˆšπ‘‘ )Γ—1/(βˆ’sin⁑𝛼 )Γ—sin^2⁑π‘₯ 𝑑𝑑 cos⁑𝛼 &sin⁑𝛼 "are constant" β–ˆ(" " @"&" 𝑑(cot⁑π‘₯ )/𝑑π‘₯=βˆ’π‘π‘œπ‘ π‘’π‘ π‘₯) =1/(βˆ’sin⁑𝛼 ) ∫1β–’1/βˆšπ‘‘ 𝑑𝑑 =(βˆ’1)/sin⁑𝛼 ∫1β–’(𝑑)^((βˆ’1)/2) 𝑑𝑑 =(βˆ’1)/sin⁑𝛼 [𝑑^((βˆ’1)/2 + 1)/((βˆ’1)/2 + 1) +𝐢] =(βˆ’1)/sin⁑𝛼 [𝑑^(1/2)/(1/2) +𝐢] =(βˆ’πŸ)/π’”π’Šπ’β‘πœΆ [πŸβˆšπ’• +π‘ͺ] Putting back value of 𝑑=√(π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 ) =(βˆ’1)/sin⁑𝛼 [2√(π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 )+𝐢] =(βˆ’2)/sin⁑𝛼 √(π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 ) βˆ’1/sin⁑𝛼 . 𝐢 =(βˆ’2)/sin⁑𝛼 √(π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 ) +𝐢 Now, From (1) sin^3⁑π‘₯ sin⁑(π‘₯+𝛼)=sin^4⁑π‘₯ (π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 ) (sin^3⁑π‘₯ sin⁑(π‘₯ + 𝛼))/sin^4⁑π‘₯ =π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 〖𝑠𝑖𝑛 〗⁑(π‘₯ + 𝛼)/sin⁑π‘₯ =π‘π‘œπ‘ β‘π›Ό+π‘π‘œπ‘‘β‘π‘₯. 𝑠𝑖𝑛⁑𝛼 Thus, Answer =(βˆ’πŸ)/π’”π’Šπ’β‘π’™ √(π’”π’Šπ’β‘(𝒙 + 𝜢)/𝐬𝐒𝐧⁑𝒙 ) + π‘ͺ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.