Integration Full Chapter Explained - Integration Class 12 - Everything you need





Last updated at Dec. 23, 2019 by Teachoo
Transcript
Misc 18 Integrate the function 1/β(sin^3β‘π₯ sinβ‘(π₯ + πΌ) ) Solving sin^3β‘π₯ sinβ‘(π₯ + πΌ) =sin^3β‘π₯ [sinβ‘π₯ cosβ‘πΌ+cosβ‘π₯.sinβ‘πΌ ] =γsin^4 π₯γβ‘cosβ‘πΌ +cosβ‘π₯.sin^3β‘π₯ sinβ‘πΌ =γsin^4 π₯γβ‘cosβ‘πΌ +cosβ‘π₯.sin^3β‘π₯ sinβ‘πΌΓsinβ‘π₯/sinβ‘π₯ =sin^4β‘π₯ [cosβ‘πΌ+cosβ‘π₯ . sinβ‘πΌ.1/sinβ‘π₯ ] Hence Using π ππβ‘(π΄+π΅)=π ππβ‘π΄ πππ β‘π΅+πππ β‘π΄.π ππβ‘π΅ =sin^4β‘π₯ [cosβ‘πΌ+cosβ‘π₯/sinβ‘π₯ . sinβ‘πΌ ] =sin^4β‘π₯ [cosβ‘πΌ+cotβ‘π₯ sinβ‘πΌ ] Therefore sin^3β‘π₯ sinβ‘(π₯+πΌ)=sin^4β‘π₯ (cosβ‘πΌ+cotβ‘π₯.sinβ‘πΌ ) Now β«1β1/β(sin^3β‘π₯ sinβ‘(π₯ + πΌ) ) ππ₯ =β«1β1/β(sin^4β‘π₯ (cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ ) ) ππ₯ =β«1βγ1/β(sin^4β‘π₯ )Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ =β«1βγ1/sin^2β‘π₯ Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ Let cosβ‘πΌ+cotβ‘π₯. sinβ‘πΌ=π‘ Diff w.r.t. x π(cosβ‘πΌ + cotβ‘π₯ sinβ‘πΌ )/ππ₯=ππ‘/ππ₯ π(cosβ‘πΌ )/ππ₯+sinβ‘πΌ π(cotβ‘π₯ )/ππ₯=ππ‘/ππ₯ =β«1βγ1/β(sin^4β‘π₯ )Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ =β«1βγ1/sin^2β‘π₯ Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ Let cosβ‘πΌ+cotβ‘π₯. sinβ‘πΌ=π‘ Diff w.r.t. x π(cosβ‘πΌ + cotβ‘π₯ sinβ‘πΌ )/ππ₯=ππ‘/ππ₯ π(cosβ‘πΌ )/ππ₯+sinβ‘πΌ π(cotβ‘π₯ )/ππ₯=ππ‘/ππ₯ 0+sinβ‘πΌ (βπππ ππ^2 π₯)=ππ‘/ππ₯ βsinβ‘πΌ πππ ππ^2 π₯=ππ‘/ππ₯ ππ₯=ππ‘/(βsinβ‘πΌ πππ ππ^2 π₯) ππ₯=1/(βsinβ‘πΌ ) . 1/(πππ ππ^2 π₯) . ππ‘ ππ₯=1/(βsinβ‘πΌ ) . sin^2β‘π₯. ππ‘ Now our equation becomes β«1β1/(sin^2β‘π₯ β(cosβ‘πΌ + cotβ‘π₯ sinβ‘πΌ ) ) ππ₯ =β«1β1/(sin^2β‘π₯ βπ‘ )Γ1/(βsinβ‘πΌ )Γsin^2β‘π₯ ππ‘ cosβ‘πΌ &sinβ‘πΌ "are constant" β(" " @"&" π(cotβ‘π₯ )/ππ₯=βπππ ππ π₯) =1/(βsinβ‘πΌ ) β«1β1/βπ‘ ππ‘ =(β1)/sinβ‘πΌ β«1β(π‘)^((β1)/2) ππ‘ =(β1)/sinβ‘πΌ [π‘^((β1)/2 + 1)/((β1)/2 + 1) +πΆ] =(β1)/sinβ‘πΌ [π‘^(1/2)/(1/2) +πΆ] =(βπ)/πππβ‘πΆ [πβπ +πͺ] Putting back value of π‘=β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) =(β1)/sinβ‘πΌ [2β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ )+πΆ] =(β2)/sinβ‘πΌ β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) β1/sinβ‘πΌ . πΆ =(β2)/sinβ‘πΌ β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) +πΆ Now, From (1) sin^3β‘π₯ sinβ‘(π₯+πΌ)=sin^4β‘π₯ (πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) (sin^3β‘π₯ sinβ‘(π₯ + πΌ))/sin^4β‘π₯ =πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ γπ ππ γβ‘(π₯ + πΌ)/sinβ‘π₯ =πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ Thus, Answer =(βπ)/πππβ‘π β(πππβ‘(π + πΆ)/π¬π’π§β‘π ) + πͺ
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important You are here
Misc 19 Important
Misc 20 Important
Misc 21
Misc 22
Misc 23
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28 Important
Misc 29
Misc 30 Important
Misc 31 Important
Misc 32 Important
Misc 33 Important
Misc 34
Misc 35
Misc 36
Misc 37
Misc 38 Important
Misc 39
Misc 40 Important Not in Syllabus - CBSE Exams 2021
Misc 41 Important
Misc 42
Misc 43
Misc 44 Important
Integration Formula Sheet - Chapter 7 Class 12 Formulas Important
About the Author