Check the formula sheet of integration. 

Topics include

  1. Basic Integration Formulas
  2. Integral of special functions
  3. Integral by Partial Fractions
  4. Integration by Parts
  5. Other Special Integrals
  6. Area as a sum
  7. Properties of definite integration 

 Integration of Trigonometric Functions, Properties of Definite Integration are all mentioned here. 1 Basic Integration  Formula - Chapter 7 Class 12.JPG

Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 2
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 3
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 4
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 5
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 6
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 7
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 8
Integration Formula Sheet - Chapter 7 Class 12 Formulas - Part 9

 

 

 

Basic Formula

  1. ∫x  = x n+1 /n+1  + C
  2. ∫cos x    = sin x  + C
  3. ∫sin x    = -cos x  + C
  4. ∫sec 2 x    = tan x  + C
  5. ∫cosec 2 x    = -cot x  + C
  6. ∫sec x tan x    = sec x  + C
  7. ∫cosec  x cot x    = -cosec x  + C
  8. ∫dx/√ 1- x 2  = sin -1  x  + C
  9. ∫dx/√ 1- x 2  = -cos -1  x  + C
  10. ∫dx/√ 1+ x 2  = tan -1  x  + C
  11. ∫dx/√ 1+ x 2  = -cot -1  x  + C
  12. ∫e  = e + C
  13. ∫a  = a x / log a + C
  14. ∫dx/x √ x 2   - 1= sec -1  x  + C
  15. ∫dx/x √ x 2   - 1= cosec -1  x  + C
  16. ∫1/x    = log |x| + c
  17. ∫tan x    = log |sec x| + c
  18. ∫cot x    = log |sin x| + c
  19. ∫sec x    = log |sec x + tan x| + c
  20. ∫cosec x    = log |cosec x - cot x| + c

Practice Basic Formula questions - Part 1 and Basic Formula questions - Part 2.

Integrals of some special function s

  1.  ∫dx/(x 2   - a 2 ) = 1/2a  log⁡ |(x - a) / (x + a)| + c
  2.  ∫dx/(a 2   - x 2 ) = 1/2a  log⁡ |(a + x) / (a - x)| + c
  3. ∫dx / (x 2   + a 2 ) = 1/a  tan (-1) ⁡ x / a + c
  4. ∫dx / √(x 2   - a 2 ) = log |"x" + √(x 2 -a 2 )| + C

  5. 1.∫dx / √(a 2   - x 2 ) = sin-1 x / a + c

  6. ∫dx / √(x 2 + a 2 ) = log |"x" + √(x 2 + a 2 )| + C

Check Practice Questions

Integrals by partial fractions

  1. (px + q) / ((x - a) (x - b)) = A/(x - a) + B / (x - b)

  2. (px + q) / (x - a) 2  = A/(x - a) + B / (x - a) 2   

  3. (px 2   + qx + r) / (x - a) (x - b) (x - c)  = A / (x - a) + B / (x - b) + C / (x - c)
  4. (px 2 + qx + r) / ((x - a) 2 (x - b) ) = A / (x - a) + B / (x - a) 2 + C / (x - b)
  5. (px 2 + qx + r) / (x - a) (x 2 + bx + c)  = A / (x - a) + (Bx + C) / (x 2 + bx + c)

    Where x 2 + bx + c can not be factorised further.

Check Practice Questions

Integration by parts

  1. ∫𝒇(𝒙) 𝒈⁡(𝒙)  𝒅𝒙 = 𝒇(𝒙) ∫𝒈 (𝒙) 𝒅𝒙− ∫(𝒇 ' (𝒙) ∫𝒈(𝒙) 𝒅𝒙) 𝒅𝒙

    To decide first function. We use

    I → Inverse (Example sin (-1)  ⁡x)

    L → Log (Example log ⁡x)

    A → Algebra (Example x 2 , x 3 )

    T → Trigonometry (Example sin 2 x)

    E → Exponential (Example e x )

  2. ∫ex [f (x) + f ′(x)] dx = ∫ex f(x) dx + C

Check Practice Questions

Other Special Integrals

  1.  ∫√ (x - a 2 ) dx = x / 2 √(x - a 2 ) − a / 2 log |x + √(x - a 2 )| + C 
  2. √( x + a 2 ) dx = x / 2 √(x + a 2 ) + a / 2 log |x +√(x + a 2 )| + C 

  3. √( a - x 2 ) dx = x / 2 √(a 2   - x 2 ) + a / 2 sin 1 x / a + C

Check Practice Questions

 

Integral of the form  ∫ (px+q) √( ax + bx + c dx

We solve this using a specific method.

  1. First we write
         px + q = A (d(√(ax + bx + c))/dx) + B
  2. Then we find A and B
  3. Our equation becomes two seperate identities and then we solve.

 

Some examples are

Check Practice Questions

Area as a sum

∫a→b f (x)  dx = (b - a)  (lim) (n→∞)  1 / n (f (a) + f (a + h) + f (a + 2h)…+ f (a + (n - 1) h))

Check Practice Questions

Properties of definite integration

  1. P 0 : ∫a→b   f(x) dx = ∫a→b   f(t) dt
  2. P 1 : ∫a→b   f(x) dx = -∫b→a   f(x) dx .In particular, ∫a→a   f(x) dx = 0
  3. P 2 : ∫a→b   f(x) dx = ∫a→c f(x) dx + ∫c→b f(x) dx
  4. P 3 : ∫a→b f(x) dx= ∫a→b   f(a + b - x) dx.
  5. P 4 : ∫0→a f(x)dx = ∫0→a   f(a - x) dx
  6. P 5 : ∫0→2a   f(x) dx = ∫0→a   f(x) dx + ∫0→a f(2a - x) dx
  7. P 6 :  ∫0→2a f(x) = {(2∫0→a   f(x) dx,  if f (2a - x) = f (x) , if f (2a - x) = -f(x))
  8. P 7 :  ∫(-a)→a f(x) = {(2∫0→a f(x) dx,  if f(-x) = f(x), if f ( -x) = -f(x)


Check Practice Questions

 

You can also download the pdf here

 

  1. Chapter 7 Class 12 Integrals (Term 2)
  2. Serial order wise

Transcript

Chapter 7 Class 12 Integration Formula Sheet by teachoo.com Basic Formulae = ^( +1)/( +1)+ , 1. , = + = sin x + C = cos x + C 2 = tan x + c 2 = cot x + c = sec x + c = cosec x + c / (1 ^2 )= sin-1 x + c / (1 ^2 )= cos-1 x + c /(1 + ^2 )= tan-1 x + c Questions in Ex 7.2 and Ex 7.3 /(1 + ^2 )= cot-1 x + c ^ = ^ + c ^ = ^ /log + c /( ( ^2 1))= sec-1 x + c /( ( ^2 1))= cosec -1 x + c 1/ = log | | + c = log |"sec x" | + c = log |"sin x" | + c = log |"sec x" +tan | + c = log |"cosec x" cot | + c Integrals of some special functions /( ^2 ^2 ) = 1/2 log |( )/( + )|+ /( ^2 ^2 ) = 1/2 log |( + )/( )|+ /( ^2 + ^2 ) = 1/ tan^( 1) / + / ( ^2 ^2 ) = log |"x" + ( ^2 ^2 )|+ C / ( ^2 ^2 ) = sin-1 / + / ( ^2 + ^2 ) = log |"x" + ( ^2+ ^2 )|+ C Integrals by partial fractions 1. ( + )/(( )( )) = /( ) + /( ), b 2. ( + )/( )^2 = /( ) + /( )^2 3. ( ^2 + + )/( )( )( ) = /( ) + /( ) + /( ) 4. ( ^2 + + )/(( )^2 ( ) ) = /( ) + /( )^2 + /( ) 5. ( ^2 + + )/( )( ^2 + + ) = /( ) + ( + )/( ^2 + + ) Where ^2+ bx + c can not be factorised further. Integration by parts 1. 1 ( ) ( ) = ( ) 1 ( ) 1 ( ^ ( ) 1 ( ) ) To decide first function. We use I Inverse (Example ^( 1) ) L Log (Example log ) A Algebra (Example x2, x3) T Trignometry (Example sin2 x) E Exponential (Example ex) 2. [ ( )+ ( )] dx = f(x) dx + C Other Special Integrals ( ^ ^ ) = /2 ( ^2 ^2 ) ^2/2 log | + ( ^2 ^2 )| + C ( ^ + ^ ) = /2 ( ^2+ ^2 ) + ^2/2 log | + ( ^2+ ^2 )| + C ( ^ ^ ) = /2 ( ^2 ^2 ) + ^2/2 sin^1 / + C Limit as a sum 1 ( ) =( ) ( ) ( ) 1/ ( ( )+ ( + )+ ( +2 ) + ( +( 1) )) Properties of definite integration P0 : _ ^ ( ) = _ ^ ( ) = P1 : _ ^ ( ) = _ ^ ( ) .In particular, _ ^ ( ) =0 P2 : _ ^ ( ) = _ ^ ( ) + _ ^ ( ) P3 : _ ^ ( ) = _ ^ ( + ) . P4 : _0^ ( ) = _0^ ( ) P5 : _0^2 ( ) = _0^ ( ) + _0^ (2 ) P6 : 24_0^2 ( ) ={ (2 24_0^ ( ) , (2 )= ( ) @&0, (2 )= ( )) P6 : _( )^ ( ) ={ (2 _0^ ( ) , ( )= ( ) @&0, ( )= ( ))

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.