Slide1.JPG

Slide2.JPG
Slide3.JPG


Transcript

Misc 24 Evaluate the definite integral ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’sin⁑π‘₯)/(1 βˆ’cos⁑π‘₯ )) 𝑑π‘₯γ€— ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’ sin⁑π‘₯)/(1 βˆ’γ€– cos〗⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 )/(1 βˆ’ cos⁑π‘₯ )βˆ’sin⁑π‘₯/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ )+(1 )/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— Let f(x) = (βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ ) f’(x) = βˆ’[(cos⁑π‘₯ (1 βˆ’ cos⁑〖π‘₯) βˆ’ (sin⁑〖π‘₯) (sin⁑〖π‘₯)γ€— γ€— γ€—)/((1 βˆ’ γ€–cos⁑π‘₯)γ€—^2 )] =βˆ’[(cos⁑〖π‘₯ βˆ’γ€— γ€–π‘π‘œπ‘ γ€—^2 π‘₯ βˆ’ 〖𝑠𝑖𝑛〗^2 π‘₯)/((1 βˆ’ γ€–cos π‘₯⁑)γ€—^2 )] = βˆ’(cos⁑〖π‘₯ βˆ’ (γ€–π‘π‘œπ‘ γ€—^2 π‘₯ + 〖𝑠𝑖𝑛〗^2 π‘₯)γ€—/((1 βˆ’ γ€–π‘π‘œπ‘  π‘₯⁑)γ€—^2 )) = βˆ’ (cos⁑〖π‘₯ βˆ’ 1γ€—/γ€–(1 βˆ’γ€– cos〗⁑〖π‘₯)γ€—γ€—^2 ) = ( 1 βˆ’ cos⁑〖π‘₯ γ€—)/γ€–(1 βˆ’ cos⁑〖π‘₯)γ€—γ€—^2 = 1/(1 βˆ’ cos⁑π‘₯ ) Hence, the given integration is of form, ∫1▒〖𝑒^π‘₯ (𝑓(π‘₯)+𝑓^β€² (π‘₯)) 𝑑π‘₯γ€—= 𝑒^π‘₯ 𝑓(π‘₯) Where f(x) = (βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ ) and f’(x) = 1/(1 βˆ’ cos⁑π‘₯ ) Hence, ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’ sin⁑π‘₯)/(1 βˆ’γ€– cos〗⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 )/(1 βˆ’ cos⁑π‘₯ )βˆ’sin⁑π‘₯/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— = [𝑒^π‘₯ ((βˆ’sin⁑π‘₯)/(1 βˆ’cos⁑π‘₯ ))]_(πœ‹/2)^πœ‹ = ((𝑒^π‘₯ sin⁑π‘₯)/cos⁑〖π‘₯ βˆ’1γ€— )_(πœ‹/2)^πœ‹ Putting limits = (𝑒^πœ‹ sinβ‘πœ‹)/cosβ‘γ€–πœ‹ βˆ’1γ€— βˆ’ (𝑒^(πœ‹/2) sinβ‘γ€–πœ‹/2γ€—)/cos⁑〖 πœ‹/2 βˆ’1γ€— = (𝑒^πœ‹ Γ— (0))/(βˆ’1 βˆ’1)βˆ’ (𝑒^(πœ‹/2) (1))/(0 βˆ’ 1) = 𝒆^(𝝅/𝟐)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.