Misc 6 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 You are here
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet - Chapter 41 Class 41 Formulas Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 (MCQ) Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Misc 6 Integrate the function 5𝑥 𝑥 + 1 𝑥2 + 9 Let I = 5𝑥 𝑥 + 1 𝑥2 + 9𝑑𝑥 We can write integrate as : 5𝑥 𝑥 + 1 𝑥2+ 9= A𝑥 + 1+ B𝑥 + 𝐶 𝑥2 + 9 By cancelling denominators 5𝑥=A 𝑥2+9+ B𝑥+𝐶 𝑥+1 Putting 𝑥=−1 5 × −1=A −12+9+ B × −1+𝐶 −1+1 – 5 = A 1+9+ −B+𝐶 0 – 5 = A × 10 – 5 = 10A A = −5 10 A = −1 2 Similarly putting 𝑥=0 5 × 0 = A 02+9+ B ×0+𝐶 0+1 0 = A 9+ 0+𝐶 1 0 = 9A + C C = – 9A C = – 9 × −1 2 C = 92 Putting x = 1 5(1)= A 12+9+ B1+𝐶 1+1 5(1)= A(10) +(B + C) (2) Putting A = −12 and C = 92 5(1) = −12 (10) + 2B + 2C 5(1) = −5 + 2B + 2 92 5(1) = −5 + 2B + 9 5 = 2B + 4 1 = 2B 12 = B Hence we can write 5𝑥 𝑥+1 𝑥2+9= −1 2𝑥 + 1+ 12 𝑥 + 92 𝑥2 + 9 = −12 𝑥 + 1+ 𝑥2 𝑥2 + 9+ 92 𝑥2 + 9 Integrating w.r.t.𝑥 5𝑥 𝑥 + 1 𝑥2 + 9𝑑𝑥= −12 𝑥 + 1+ 𝑥2 𝑥2 + 9+ 92 𝑥2 + 9 = −12 𝑥 + 1𝑑𝑥+ 𝑥2 𝑥2 + 9𝑑𝑥+ 92 𝑥2 + 9𝑑𝑥 Hence I = I1 + I2 + I3 I1 = −12 𝑥 + 1𝑑𝑥 = −1 2 𝑙𝑜𝑔 𝑥+1+𝐶1 I2 = 𝑥2 𝑥2 + 9𝑑𝑥 = 12 𝑥 𝑥2 + 9𝑑𝑥 Putting 𝑡= 𝑥2+9 Differentiating w.r.t. 𝑥 𝑑𝑡𝑑𝑥=2𝑥 𝑑𝑡2𝑥=𝑑𝑥 Therefore 12 𝑥 𝑥2 + 9𝑑𝑥= 12 𝑥𝑡 × 𝑑𝑡2𝑥 = 12 𝑑𝑡2𝑡 = 12 ×2 𝑑𝑡𝑡 = 14log 𝑡+𝐶2 Putting back 𝑡= 𝑥2+9 = 14𝑙𝑜𝑔 𝑥2+9+𝐶2 Now, I3 = 92 𝑥2 + 9𝑑𝑥 = 92 1 𝑥2 + 9𝑑𝑥 Now, I3 = 92 𝑥2 + 9𝑑𝑥 = 92 1 𝑥2 + 9𝑑𝑥 = 92 1 𝑥2 + 32𝑑𝑥 = 92 × 13 tan−1 𝑥3+𝐶3 = 32 tan−1 𝑥3+ 𝐶3 Hence I = I1 + I2 + I3 = −1 2𝑙𝑜𝑔 𝑥+1+𝐶1+ 14𝑙𝑜𝑔 𝑥2+9+𝐶2+ 32 tan−1 𝑥3+𝐶3 = −1 2𝑙𝑜𝑔 𝑥+1+ 14𝑙𝑜𝑔 𝑥2+9+ 32 tan−1 𝑥3+𝐶1+𝐶2+𝐶3 = −𝟏 𝟐𝒍𝒐𝒈 𝒙+𝟏+ 𝟏𝟒𝒍𝒐𝒈 𝒙𝟐+𝟗+ 𝟑𝟐 𝐭𝐚𝐧−𝟏 𝒙𝟑+𝑪