Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Miscellaneous

Misc 1
Important

Misc 2 Important

Misc 3 Important

Misc 4

Misc 5 Important

Misc 6

Misc 7 Important

Misc 8 Important

Misc 9

Misc 10 Important

Misc 11

Misc 12

Misc 13

Misc 14 Important

Misc 15

Misc 16

Misc 17

Misc 18 Important

Misc 19 Important You are here

Misc 20

Misc 21

Misc 22

Misc 23 Important

Misc 24 Important

Misc 25 Important

Misc 26 Important

Misc 27 Important

Misc 28

Misc 29 Important

Misc 30 Important

Misc 31 Important

Misc 32

Misc 33

Misc 34

Misc 35

Misc 36 Important

Misc 37

Misc 38 (MCQ) Important

Misc 39 (MCQ)

Misc 40 (MCQ)

Integration Formula Sheet - Chapter 41 Class 41 Formulas Important

Question 1 Important Deleted for CBSE Board 2024 Exams

Question 2 Important Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 (MCQ) Important Deleted for CBSE Board 2024 Exams

Chapter 7 Class 12 Integrals

Serial order wise

Last updated at June 13, 2023 by Teachoo

Misc 19 Integrate the function β((1 β βπ₯)/(1 + βπ₯)) β«1βγβ((1 β βπ₯)/(1 + βπ₯)) ππ₯γ Let x = γπππγ^π ππ½ dx = β4 cos 2π sin 2π dπ Substituting, = β«1ββ((1 β β((γπππ γ^2 2π) ))/(1 + β((γπππ γ^2 2π) )))Γβ4 cosβ‘2ΞΈ sinβ‘2ΞΈ ππ = β«1ββ((1 β cosβ‘2π)/(1 + πππ 2π))Γ(β4) cosβ‘2ΞΈ sinβ‘2ΞΈ ππ = β4β«1ββ((1 β (1 β 2γπ ππγ^(2 ) π))/(1 + (2γπππ γ^(2 ) π β 1) )) cosβ‘2ΞΈ (2 sinβ‘ΞΈ cosβ‘γπ)γ ππ = β8β«1ββ((2γπ ππγ^(2 ) π)/(2γπππ γ^(2 ) π)) cosβ‘2ΞΈ cosβ‘π sinβ‘π ππ = β8β«1βsinβ‘π/cosβ‘ΞΈ cosβ‘2ΞΈ cosβ‘π sinβ‘π ππ = β8β«1βγγπ ππγ^2 πγ cosβ‘2ΞΈ ππ = β8β«1β((1 β cosβ‘2ΞΈ)/2) cosβ‘2ΞΈ ππ = β4 β«1β(πππ 2ΞΈβcos^2β‘2ΞΈ ) ππ = 4 β«1β(γπππ γ^2 2ΞΈβcosβ‘2ΞΈ ) ππ = 4 β«1βγγπππ γ^2 2ΞΈγ ππβ4β«1βcosβ‘2ΞΈ ππ = 4 β«1β(cosβ‘4π + 1)/2 ππ β 4β«1βγπππ 2πγ ππ = 2 β«1βγ(cosβ‘4π + 1)γ ππ β 4β«1βγπππ 2πγ ππ = 2 [(sinβ‘4 π)/4+π] β4 [(sinβ‘2 π)/2]+C = sinβ‘4π/2+2π β2 π ππ 2π+ C Now x = γπππ γ^2 2π βπ₯ " = " cosβ‘2π γπππ γ^(β1) βπ₯=2π 1/2 γπππ γ^(β1) βπ₯=π And, sin 4π = 2 sin 2π cos 2π = 2β(1βπ₯)Γβπ₯ = 2 βπ₯ β(1βπ₯) Putting the values. = sinβ‘4π/2+2ΞΈβ2 sinβ‘2ΞΈ+ C = (2βπ₯ β(1 β π₯))/2+2 (γπππ γ^(β1) βπ₯)/2β2β(1βπ₯)+C = βπ₯ β(1βπ₯)+γπππ γ^(β1) βπ₯β2β(1βπ₯)+ C = β(π₯βπ₯^2 )+γπππ γ^(β1) βπ₯β2β(1βπ₯)+C = β2β(πβπ)+γπππγ^(βπ) βπ+β(πβπ^π )+π