



Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21
Misc 22
Misc 23
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important You are here
Misc 28 Important
Misc 29
Misc 30 Important
Misc 31 Important
Misc 32 Important
Misc 33 Important
Misc 34
Misc 35
Misc 36
Misc 37
Misc 38 Important
Misc 39
Misc 40 Important Deleted for CBSE Board 2022 Exams
Misc 41 (MCQ) Important
Misc 42 (MCQ)
Misc 43 (MCQ)
Misc 44 (MCQ) Important
Integration Formula Sheet - Chapter 7 Class 12 Formulas Important
Misc 27 Evaluate the definite integral โซ_0^(๐/2)โใ(cos^2โก๐ฅ ๐๐ฅ)/(cos^2โก๐ฅ + 4 sin^2โก๐ฅ ) ใ Let I = โซ1_0^(๐/2)โ(ใ๐๐๐ ใ^2 ๐ฅ)/(ใ๐๐๐ ใ^2 ๐ฅ + 4ใ๐ ๐๐ใ^2 ๐ฅ) ๐๐ฅ = โซ1_0^(๐/2)โ(ใ๐๐๐ ใ^2 ๐ฅ)/(ใ๐๐๐ ใ^2 ๐ฅ + 4(ใ1 โ ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ) = โซ1_0^(๐/2)โ(ใ๐๐๐ ใ^2 ๐ฅ)/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ = (โ1)/3 โซ1_0^(๐/4)โใ (โ3 ใ๐๐๐ ใ^2 ๐ฅ )/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ใ ๐๐ฅ = (โ1)/3 โซ1_0^(๐/2)โ(ใโ 3 ๐๐๐ ใ^2 ๐ฅ + 4 โ 4)/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ = (โ1)/3 โซ1_0^(๐/2)โ(ใ4 โ 3 ๐๐๐ ใ^2 ๐ฅ โ 4)/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ = (โ1)/3 โซ1_0^(๐/2)โใ1โ4/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ)ใ ๐๐ฅ Dividing numerator and denominator by ใ๐๐๐ ใ^2 ๐ฅ = (โ1)/3 (๐/2)+4/3 โซ1_0^(๐/2)โ(๐๐ฅ/(ใ๐๐๐ ใ^2 ๐ฅ))/((4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ )/(ใ๐๐๐ ใ^2 ๐ฅ)) ๐๐ฅ = (โ1)/3 (๐/2)+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/(4 ใ๐ ๐๐ใ^2 ๐ฅ โ 3) ๐๐ฅ = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/(4 (1 + ใ๐ก๐๐ใ^2 ๐ฅ) โ 3) ๐๐ฅ = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/(4 + 4 ใ๐ก๐๐ใ^2 ๐ฅ โ 3) ๐๐ฅ = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/( 4 ใ๐ก๐๐ใ^2 ๐ฅ + 1) ๐๐ฅ Let tan x = t Differentiating w.r.t x ใ๐ ๐๐ใ^2 x dx = dt Thus, When x = 0, t = 0, & when x = ๐/2, ๐ก= โ Substituting values and limit I = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/( 4 ใ๐ก๐๐ใ^2 ๐ฅ + 1) ๐๐ฅ โด I =(โ๐)/6+4/3 โซ1_0^โโ๐๐ก/(ใ4๐กใ^2+1) = (โ๐)/6+4/3 โ1/4 โซ1_0^โโ๐๐ก/(ใ ๐กใ^2+1/4) =(โ๐)/6+4/3โ1/4 ร 1/((1/2) ) [ใ๐ก๐๐ใ^(โ1) ๐ก/(1/2)]_0^โ = (โ๐)/6+2/3โ [ใ๐ก๐๐ใ^(โ1) 2๐ก]_0^โ =(โ๐)/6+2/3โใ[๐ก๐๐ใ^(โ1) โโใ๐ก๐๐ใ^(โ1) 0] = โ๐/6+2/3โ[๐/2โ0] =โ๐/6+๐/3 =๐ /๐ We know that โซ1โ1/(๐ฅ^2 + ๐^2 )=ใ1/๐ tan^(โ1)ใโกใ๐ฅ/๐ใ+๐ถ = (โ๐)/6+2/3โ[๐/2โ0] =(โ๐)/6+๐/3 =๐/3โ๐/6 =๐ /๐