



Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21
Misc 22
Misc 23
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important You are here
Misc 28 Important
Misc 29
Misc 30 Important
Misc 31 Important
Misc 32 Important
Misc 33 Important
Misc 34
Misc 35
Misc 36
Misc 37
Misc 38 Important
Misc 39
Misc 40 Important Deleted for CBSE Board 2023 Exams
Misc 41 (MCQ) Important
Misc 42 (MCQ)
Misc 43 (MCQ)
Misc 44 (MCQ) Important
Integration Formula Sheet - Chapter 7 Class 12 Formulas Important
Last updated at March 30, 2023 by Teachoo
Misc 27 Evaluate the definite integral ∫_0^(𝜋/2)▒〖(cos^2𝑥 𝑑𝑥)/(cos^2𝑥 + 4 sin^2𝑥 ) 〗 Let I = ∫1_0^(𝜋/2)▒(〖𝑐𝑜𝑠〗^2 𝑥)/(〖𝑐𝑜𝑠〗^2 𝑥 + 4〖𝑠𝑖𝑛〗^2 𝑥) 𝑑𝑥 = ∫1_0^(𝜋/2)▒(〖𝑐𝑜𝑠〗^2 𝑥)/(〖𝑐𝑜𝑠〗^2 𝑥 + 4(〖1 − 𝑐𝑜𝑠〗^2 𝑥) 𝑑𝑥) = ∫1_0^(𝜋/2)▒(〖𝑐𝑜𝑠〗^2 𝑥)/(4 − 3 〖𝑐𝑜𝑠〗^2 𝑥) 𝑑𝑥 = (−1)/3 ∫1_0^(𝜋/4)▒〖 (−3 〖𝑐𝑜𝑠〗^2 𝑥 )/(4 − 3 〖𝑐𝑜𝑠〗^2 𝑥) 〗 𝑑𝑥 = (−1)/3 ∫1_0^(𝜋/2)▒(〖− 3 𝑐𝑜𝑠〗^2 𝑥 + 4 − 4)/(4 − 3 〖𝑐𝑜𝑠〗^2 𝑥) 𝑑𝑥 = (−1)/3 ∫1_0^(𝜋/2)▒(〖4 − 3 𝑐𝑜𝑠〗^2 𝑥 − 4)/(4 − 3 〖𝑐𝑜𝑠〗^2 𝑥) 𝑑𝑥 = (−1)/3 ∫1_0^(𝜋/2)▒〖1−4/(4 − 3 〖𝑐𝑜𝑠〗^2 𝑥)〗 𝑑𝑥 Dividing numerator and denominator by 〖𝑐𝑜𝑠〗^2 𝑥 = (−1)/3 (𝜋/2)+4/3 ∫1_0^(𝜋/2)▒(𝑑𝑥/(〖𝑐𝑜𝑠〗^2 𝑥))/((4 − 3 〖𝑐𝑜𝑠〗^2 𝑥 )/(〖𝑐𝑜𝑠〗^2 𝑥)) 𝑑𝑥 = (−1)/3 (𝜋/2)+4/3 ∫1_0^(𝜋/2)▒(〖𝑠𝑒𝑐〗^2 𝑥)/(4 〖𝑠𝑒𝑐〗^2 𝑥 − 3) 𝑑𝑥 = (−𝜋)/6+4/3 ∫1_0^(𝜋/2)▒(〖𝑠𝑒𝑐〗^2 𝑥)/(4 (1 + 〖𝑡𝑎𝑛〗^2 𝑥) − 3) 𝑑𝑥 = (−𝜋)/6+4/3 ∫1_0^(𝜋/2)▒(〖𝑠𝑒𝑐〗^2 𝑥)/(4 + 4 〖𝑡𝑎𝑛〗^2 𝑥 − 3) 𝑑𝑥 = (−𝜋)/6+4/3 ∫1_0^(𝜋/2)▒(〖𝑠𝑒𝑐〗^2 𝑥)/( 4 〖𝑡𝑎𝑛〗^2 𝑥 + 1) 𝑑𝑥 Let tan x = t Differentiating w.r.t x 〖𝑠𝑒𝑐〗^2 x dx = dt Thus, When x = 0, t = 0, & when x = 𝜋/2, 𝑡= ∞ Substituting values and limit I = (−𝜋)/6+4/3 ∫1_0^(𝜋/2)▒(〖𝑠𝑒𝑐〗^2 𝑥)/( 4 〖𝑡𝑎𝑛〗^2 𝑥 + 1) 𝑑𝑥 ∴ I =(−𝜋)/6+4/3 ∫1_0^∞▒𝑑𝑡/(〖4𝑡〗^2+1) = (−𝜋)/6+4/3 ∙1/4 ∫1_0^∞▒𝑑𝑡/(〖 𝑡〗^2+1/4) =(−𝜋)/6+4/3∙1/4 × 1/((1/2) ) [〖𝑡𝑎𝑛〗^(−1) 𝑡/(1/2)]_0^∞ = (−𝜋)/6+2/3∙ [〖𝑡𝑎𝑛〗^(−1) 2𝑡]_0^∞ =(−𝜋)/6+2/3∙〖[𝑡𝑎𝑛〗^(−1) ∞−〖𝑡𝑎𝑛〗^(−1) 0] = −𝜋/6+2/3∙[𝜋/2−0] =−𝜋/6+𝜋/3 =𝝅/𝟔 We know that ∫1▒1/(𝑥^2 + 𝑎^2 )=〖1/𝑎 tan^(−1)〗〖𝑥/𝑎〗+𝐶 = (−𝜋)/6+2/3∙[𝜋/2−0] =(−𝜋)/6+𝜋/3 =𝜋/3−𝜋/6 =𝝅/𝟔