Question 3 - Miscellaneous - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet - Chapter 41 Class 41 Formulas Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams You are here
Question 4 (MCQ) Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Question 3 Evaluate β«_0^1βπ^(2 β3π₯)β‘ππ₯ as a limit of a sum . I=β«_0^1βπ^(2 β3π₯)β‘ππ₯ I=β«_0^1βγπ^2 . π^(β3π₯)γβ‘ππ₯ I=π^2 β«_0^1βπ^(β3π₯)β‘ππ₯ Solving I1 separately β«_0^1βπ^(β3π₯) ππ₯ Putting π = 0 π =1 β = (π β π)/π = (1 β 0)/π = 1/π π(π₯)=π^(β3π₯) We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«_0^1βπ^(β3π₯) ππ₯ =(1β0) limβ¬(nββ) 1/π (π(0)+π(0+β)+π(0+2β)+β¦ +π(0+(πβ1)β) =limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)β¦β¦+π((πβ1)β) Here, π(π₯)=π^(β3π₯) π(0)=π^(β3(0))=1 π(β)=π^(β3β) π(2β)=π^(β3(2β))=π^(β6β) π((πβ1)β)=π^(β3(πβ1)β) Hence, our equation becomes β«_0^1βπ^(β3π₯) ππ₯ =limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)β¦β¦+π(πβ1)β) = limβ¬(nββ) 1/π (1+π^(β3β)+π^(β6β)+ β¦β¦+π^(β3(π β 1) β) ) Let S = 1+π^(β3β)+π^(β6β)+ β¦β¦+π^(β3(π β 1) β) It is a G.P. with common ratio (r) r = π^(β3β)/1 = π^(β3β) We know Sum of G.P = a((π^π β 1)/(π β 1)) Replacing a by 1 and r by π^(β3β) , we get S = 1(((π^(β3β) )^π β 1)/(π^(β3β) β 1))= (π^(β3πβ) β 1)/(π^(β3β) β 1) Thus β΄ β«_0^1βπ^(β3π₯) ππ₯ =limβ¬(nββ) 1/π (1+π^(β3β)+π^(β6β)+ β¦+π^(β3(π β 1) β) ) Putting the value of S, we get =limβ¬(nββ) 1/π ((π^(β3πβ) β 1)/(π^(β3β) β 1)) = (πππ)β¬(πββ) 1/π ((π^(β3πβ) β 1)/(β3β . (π^(β3β) β 1)/(β3β))) = (πππ)β¬(πββ) (π^(β3πβ) β 1)/(β3πβ) . 1/( (π^(β3β) β 1)/(β3β)) = (πππ)β¬(πββ) (π^(β3πβ) β 1)/(β3πβ) . (πππ)β¬(πββ) 1/( (π^(β3β) β 1)/(β3β)) Solving (π₯π’π¦)β¬(π§ββ) ( π)/(( π^(βππ) β π)/(βππ)) As nββ β 1/β ββ β β β0 β΄ limβ¬(nββ) ( 1)/(( π^(β3β) β 1)/(β3β)) = limβ¬(hβ0) ( 1)/(( π^(β3β) β 1)/(β3β)) = 1/1 = 1 Thus, our equation becomes β«1_0^1βγπ^(β3π₯) ππ₯γ =(πππ)β¬(πββ) (π^(β3πβ) β 1)/(β3πβ).(πππ)β¬(πββ) 1/( (π^(β3β) β 1)/(β3β)) = (πππ)β¬(πββ) (π^(β3πβ) β 1)/(β3πβ). 1 = (πππ)β¬(πββ) (π^(β3π . 1/π) β 1)/(β3π (1/π) ) = (πππ)β¬(πββ) (π^(β3) β 1)/(β3) = 1/1 = 1 Thus, our equation becomes β«1_0^1βγπ^(β3π₯) ππ₯γ =(πππ)β¬(πββ) (π^(β3πβ) β 1)/(β3πβ).(πππ)β¬(πββ) 1/( (π^(β3β) β 1)/(β3β)) = (πππ)β¬(πββ) (π^(β3πβ) β 1)/(β3πβ). 1 = (πππ)β¬(πββ) (π^(β3π . 1/π) β 1)/(β3π (1/π) ) = (πππ)β¬(πββ) (π^(β3) β 1)/(β3) = (π^(β3) β 1)/(β3) = (1 β π^(β3))/3 = (1 β 1/π^3 )/3 = (π^3 β 1)/(3π^3 ) Putting the values of I1 in (1) I=π^2Γ1/3 [(π^3 β 1)/π^3 ] I1=1/3 [(π^3 β 1)/π] π=π/π [π^πβ π/π]