# Misc 15 - Chapter 7 Class 12 Integrals

Last updated at May 29, 2018 by Teachoo

Last updated at May 29, 2018 by Teachoo

Transcript

Misc 15 Integrate the function cos^3x e^logsinx Let t = log (sin x) dt/dx=1/sinx cosx dt = 1/sinx cos〖x dx〗 "dt = " 1/e^t cos〖x dx〗 e^t dt=cos〖x dx〗 Substituting, ∫1▒〖e^logsinx cos^3〗x dx = ∫1▒〖e^t cos^2x 〗 cosx dx = ∫1▒e^t 〖cos〗^2 x e^t dt = ∫1▒e^2t 〖cos〗^2 x dt = ∫1▒〖e^2t (1-〖sin〗^2 x) dt 〗 = ∫1▒〖e^2t (1-e^2t ) dt〗 = ∫1▒(e^2t-e^4t ) dt = e^2t/2-e^4t/4+ C Putting value of e^t=sinx = ((〖sin〖x)〗〗^2)/2-(〖sin〗^4 x)/4+ C = (1 -〖 cos〗^2 x)/2- (1 -〖 cos〗^2 x)^2/4+ C = (1 -〖 cos〗^2 x)/4-((1 +〖 cos〗^4 -2〖cos〗^2 x)/4)+ C = 1/2-(〖cos〗^2 x)/2-1/4-(〖cos〗^4 x)/4+(〖cos〗^2 x)/2+ C = 1/4-(〖cos〗^4 x)/4+ C = (-〖cos〗^4 x)/4+ C_1 ∫1▒〖e^logsinx cos^3〗x = ∫1▒〖sin x cos^3〗〖x dx〗 = ∫1▒sin〖x 〖cos〗^2 x (cos〖x dx〗 〗 ) Let t = sin x dt/dx=cosx dt =cosx dx Substituting, = ∫1▒〖t 〖cos〗^2 〗 x dt = ∫1▒〖t (1-t^2 〗) dt = ∫1▒(t-t^3 ) dt = t^2/2-t^4/4+ C Putting value of t = ((〖sin〖x)〗〗^2)/2-(〖sin〗^4 x)/4+ C =(1 - 〖cos〗^2 x)/2- (1 - 〖cos〗^2 x)^2/4+ C = (1 -〖 cos〗^2 x)/4-((1 + 〖cos〗^4 -2〖cos〗^2 x)/4)+ C = 1/2-(〖cos〗^2 x)/2-1/4-(〖cos〗^4 x)/4+(〖cos〗^2 x)/2+ C = 1/4-(〖cos〗^4 x)/4+ C = (-〖cos〗^4 x)/4+ C_1

Miscellaneous

Misc 1

Misc 2

Misc 3

Misc 4

Misc 5

Misc 6

Misc 7

Misc 8 Important

Misc 9

Misc 10

Misc 11

Misc 12

Misc 13

Misc 14

Misc 15 You are here

Misc 16

Misc 17

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21

Misc 22

Misc 23

Misc 24 Important

Misc 25

Misc 26

Misc 27

Misc 28

Misc 29

Misc 30 Important

Misc 31

Misc 32 Important

Misc 33

Misc 34

Misc 35

Misc 36

Misc 37

Misc 38

Misc 39

Misc 40

Misc 41 Important

Misc 42

Misc 43

Misc 44 Important

Integration Formula Sheet - Chapter 7 Class 12 Formulas Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.