Ex 7.7, 14 (Supplementary NCERT) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.7
Ex 7.7, 2 Important
Ex 7.7, 3
Ex 7.7, 4
Ex 7.7, 5 Important
Ex 7.7, 6
Ex 7.7, 7 Important
Ex 7.7, 8 Important
Ex 7.7, 9
Ex 7.7, 10
Ex 7.7, 11 Important
Ex 7.7, 12 (Supplementary NCERT) Important Deleted for CBSE Board 2025 Exams
Ex 7.7, 13 (Supplementary NCERT) Deleted for CBSE Board 2025 Exams
Ex 7.7, 14 (Supplementary NCERT) Important Deleted for CBSE Board 2025 Exams You are here
Last updated at April 16, 2024 by Teachoo
Ex 7.7, 14 (Supplementary NCERT) (๐ฅ+3) โ(3โ4๐ฅใโ๐ฅใ^2 ) (๐ฅ+3) โ(3โ4๐ฅใโ๐ฅใ^2 ) We can write it as:- x + 3 = A [๐/๐๐ฅ (3โ4๐ฅโ๐ฅ^2 )]+ B x + 3 = A [0โ4โ2๐ฅ]+ B x + 3 = A [โ4โ2๐ฅ]+ B x + 3 = โ4"A"โ2"A" ๐ฅ+ B x + 3 = โ2"A" ๐ฅ+(โ4"A"+๐ต) Comparing x and constant term Thus, we can write x + 3 = A [โ4โ2๐ฅ] + B x + 3 = (โ1)/2 [โ4โ2๐ฅ] + 1 x = (โ2A)x ๐ฅ/๐ฅ = โ2A 1 = โ2A A = (โ1)/2 3 = โ4A + B 3 = โ4((โ1)/2) + B 3 = 2 + B B = 3 โ 2 B = 1 Integrating the function w.r.t.x โซ1โใ(๐ฅ+3) โ(3โ4๐ฅโ๐ฅ^2 ) ใ ๐๐ฅ = โซ1โใ[โ1/2 [โ4 โ2๐ฅ]+1] ใ โ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ = โซ1โใ[โ1/2 [โ4 โ2๐ฅ] โ(3โ4๐ฅโ๐ฅ^2 )+1โ(3โ4๐ฅโ๐ฅ^2 )] ใ ๐๐ฅ = โซ1โใโ1/2 [โ4 โ2๐ฅ] โ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ+ใ โซ1โโ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ = โ1/2 โซ1โใ[โ4 โ2๐ฅ] โ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ+ใ โซ1โโ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ Solving ๐ฐ_๐ I_1 = (โ1)/2 โซ1โใ[โ4โ2๐ฅ] โ(3โ4๐ฅโ๐ฅ^2 )ใ ๐๐ฅ Let 3 โ 4๐ฅ โ ๐ฅ^2 = t Diff. both sides w.r.t.x 0 โ 4 โ2x = ๐๐ก/๐๐ฅ โ 4 โ 2x = ๐๐ก/๐๐ฅ dx = ๐๐ก/(โ4 โ 2๐ฅ) Thus, our equation becomes I_1 = (โ1)/2 โซ1โใ[โ4โ2๐ฅ] โ(3โ4๐ฅโ๐ฅ^2 )ใ ๐๐ฅ Putting the value if (3โ4๐ฅโ๐ฅ^2) and dx, we get I_1 = (โ1)/2 โซ1โใ[โ4โ2๐ฅ] โ๐กใ. ๐๐ฅ I_1 = (โ1)/2 โซ1โใ[โ4โ2๐ฅ] โ๐กใ. ๐๐ก/[โ4โ2๐ฅ] ("Using t = " 3โ4๐ฅ โ๐ฅ^2 ) Solving ๐ฐ_๐ I_2 = โซ1โโ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ I_2 = โซ1โโ(3โ(4๐ฅ+๐ฅ^2)) ๐๐ฅ I_2 = โซ1โโ(3โ(๐ฅ^2+4๐ฅ)) ๐๐ฅ I_2 = โซ1โใโ(3โ[๐ฅ^2+2(2) (๐ฅ))] ใ ๐๐ฅ I_2 = โซ1โใโ(3โ[๐ฅ^2+2(2)+(2)^2 โใ(2)ใ^2 )] ใ ๐๐ฅ I_2 = โซ1โใโ(3โ[(ใ๐ฅ+2)ใ^2โ ใ(2)ใ^2 )] ใ ๐๐ฅ I_2 = โซ1โใโ(3โ(๐ฅ+2)^2+ ใ(2)ใ^2 ) ใ ๐๐ฅ I_2 = โซ1โใโ(3โ(๐ฅ+2)^2+4) ใ ๐๐ฅ I_2 = โซ1โใโ(7โ(๐ฅ+2)^2 ) ใ ๐๐ฅ I_2 = โซ1โใโ(ใ(โ7)ใ^2โ(๐ฅ+2)^2 ) ใ ๐๐ฅ I_2 = (๐ฅ + 2)/2 โ((โ7)^2โ(๐ฅ+2)^2 )+ใ(7)ใ^2/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 2)/โ7)+ C_2 I_2 = (๐ฅ + 2)/2 โ(7โใ(๐ฅใ^2 + 4๐ฅ +4)) +7/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 2)/โ7)+ C_2 I_2 = (๐ฅ + 2)/2 โ(7โ๐ฅ^2 + 4๐ฅ +4) +7/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 2)/โ7)+ C_2 I_2 = (๐ฅ + 2)/2 โ(3โ 4๐ฅโ๐ฅ^2 ) +7/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 2)/โ7)+ C_2 It is of form โ(๐^2โ๐ฅ^2 ) ๐๐ฅ=1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 ใ๐ ๐๐ใ^(โ1) (๐ฅ/๐)+ ๐ถ_2 Replacing x by (x + 2) a by โ7 , we get Putting the value of I_1 and I_2 in (1) โซ1โ(๐ฅ+3) โ(3โ 4๐ฅโ๐ฅ^2 ) d๐ฅ = (โ1)/2 โซ1โใ[โ4โ2๐ฅ] โ(3โ4๐ฅโ๐ฅ^2 )ใ ๐๐ฅ+โซ1โโ(3โ4๐ฅโ๐ฅ^2 ) ๐๐ฅ = (โ1)/3 ใ(3โ4๐ฅโ๐ฅ^2)ใ^(3/2) + C_1+ ((๐ฅ +2) โ(3 โ 4๐ฅ โ ๐ฅ^2 ))/2+7/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 2)/โ7)+ C_3 = (โ๐)/๐ ใ(๐โ๐๐โ๐^๐)ใ^(๐/๐) +๐/๐ ใ๐๐๐ใ^(โ๐) ((๐ + ๐)/โ๐)+ ((๐ +๐) โ(๐ โ ๐๐ โ ๐^๐ ))/๐+ ๐