Ex 7.7, 11 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.7
Ex 7.7, 2 Important
Ex 7.7, 3
Ex 7.7, 4
Ex 7.7, 5 Important
Ex 7.7, 6
Ex 7.7, 7 Important
Ex 7.7, 8 Important
Ex 7.7, 9
Ex 7.7, 10
Ex 7.7, 11 Important You are here
Ex 7.7, 12 (Supplementary NCERT) Important Deleted for CBSE Board 2025 Exams
Ex 7.7, 13 (Supplementary NCERT) Deleted for CBSE Board 2025 Exams
Ex 7.7, 14 (Supplementary NCERT) Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Ex 7.7, 11 β«1βγβ(π₯2 β8π₯+7) " " γ ππ₯ 1/2 (x - 4)β(π₯2 β8π₯+7) + 9 log |π₯β4+β(π₯2β8π₯+7)| + C 1/2 (x + 4)β(π₯2 β8π₯+7) + 9 log |π₯+4+β(π₯2β8π₯+7)| + C 1/2 (x - 4)β(π₯2 β8π₯+7) - 3β2 log |π₯β4+β(π₯2β8π₯+7)| + C 1/2 (x - 4)β(π₯2 β8π₯+7) + 9/2 log |π₯β4+β(π₯2β8π₯+7)| + C β«1βγβ(π₯^2β8π₯+7) ππ₯γ =β«1βγβ(π₯^2β2(4)(π₯)+7) ππ₯γ =β«1βγβ(π₯^2β2(4)(π₯) γ+(4)γ^2β(4)^2+7) ππ₯γ =β«1βγβ((π₯β4)^2β16+7) ππ₯γ =β«1βγβ((π₯β4)^2β9 ) ππ₯γ =β«1βγβ((π₯β4)^2β(3)^2 ) ππ₯γ =(π₯ β 4)/2 β((π₯β4)^2β(3)^2 )β(3)^2/2 πππ|π₯β4+β((π₯β4)^2β(3)^2 )|+πΆ =(π₯ β 4)/2 β(π₯^2β8π₯+16β9 )β9/2 πππ|π₯β4+β(π₯^2β8π₯+16β9)|+πΆ =(π₯ β 4)/2 β(π₯^2β8π₯+7)β9/2 πππ|π₯β4+β(π₯^2β8π₯+7)|+πΆ β΄ Option (D) is correct. It is of the form β«1βγβ(π₯^2βπ^2 ) ππ₯=π₯/2 β(π₯^2βπ^2 )βπ^2/2 πππ|π₯+β(π₯^2βπ^2 )|+πΆγ β΄ Replacing π₯ by π₯β4 and a by 3 , we get