







Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 (Supplementary NCERT) Important Deleted for CBSE Board 2024 Exams You are here
Last updated at May 29, 2023 by Teachoo
Question 3 (Supplementary NCERT) β«1βπ₯ β(1+π₯βπ₯^2 ) ππ₯ β«1βπ₯ β(1+π₯βπ₯^2 ) ππ₯ We can write it as:- x = A [π/ππ₯ (1+π₯βπ₯^2 )]+ B x = A [0+1β2π₯]+ B x = A [1β2π₯]+ B x = "A"β2"A" π₯+ B x = β2"A" π₯+(π΄+π΅) Comparing x and constant term Thus, we can write x = A [1β2π₯] + B x = ((β1)/2)[1β2π₯] + 1 x = (β2A) x π₯/π₯ = β2A 1 = β2A A = (β1)/2 0 = A + B B = βA B = β((β1)/2) B = 1/2 Integrating β«1βγπ₯β(1+π₯βπ₯^2 ) γ ππ₯ = β«1βγ[(β1/2)[1β2π₯]+1/2] γ β(1+π₯βπ₯^2 ) ππ₯ = β«1βγ[(β1/2)[1 β2π₯] β(1+π₯βπ₯^2 )+1/2 β(1+π₯βπ₯^2 )] γ ππ₯ = β«1βγ(β1/2)[1β2π₯] β(1+π₯βπ₯^2 ) ππ₯+γ β«1βγ1/2 β(1βπ₯βπ₯^2 )γ ππ₯ = β1/2 β«1βγ[1β2π₯] β(1+π₯βπ₯^2 ) ππ₯+γ 1/2 β«1ββ(1+π₯βπ₯^2 ) ππ₯ Solving π°_π I_1 = (β1)/2 β«1βγ[1β2π₯] β(1+π₯βπ₯^2 )γ ππ₯ Let 1 + π₯ β π₯^2 = t Diff. both sides w.r.t.x 0 + 1 β2x = ππ‘/ππ₯ (1 β 2x) dx = dt dx = ππ‘/(1 β 2π₯) Thus, our equation becomes I_1 = (β1)/2 β«1βγ[1β2π₯] β(1+π₯βπ₯^2 )γ ππ₯ Putting the value if (1+π₯βπ₯^2) and dx, we get I_1 = (β1)/2 β«1βγ[1β2π₯] βπ‘γ. ππ₯ I_1 = (β1)/2 β«1βγ[1β2π₯] βπ‘γ. ππ‘/[1 β 2π₯] πΌ_1 = (β1)/2 β«1ββπ‘. ππ‘ I_1 = (β1)/2 β«1βγ(π‘)γ^(1/2) ππ‘ I_1 = (β1)/2 γπ‘ γ^(1/2 + 1)/((1/2 + 1) )+ C_1 I_1 = (β1)/2 γπ‘ γ^(3/2 )/((3/2) )+ C_1 I_1 = (β1)/3 γπ‘ γ^(3/2 )+ C_1 I_1 = (β1)/3 γ(1βπ₯ βπ₯^2 ) γ^(3/2 )+ C_1 ("Using t = " 1βπ₯ βπ₯^2 ) Solving π°_π I_2 = 1/2 β«1ββ(1+π₯βπ₯^2 ) ππ₯ I_2 = 1/2 β«1ββ(β(π₯^2βπ₯β1)) ππ₯ I_2 = 1/2 β«1ββ(β[π₯^2β2(π₯)(1/2)β1] ) ππ₯ I_2 = 1/2 β«1βγβ(β[π₯^2β2(π₯)(1/2)+(1/2)^2β(1/2)^2β1] ) γ ππ₯ I_2 = 1/2 β«1βγβ(β[(π₯β1/2)^2β(1/2)^2β1] ) γ ππ₯ I_2 = 1/2 β«1βγβ(β[γ (π₯β1/2)γ^2+(β1 β4)/4] ) γ ππ₯ I_2 = 1/2 β«1βγβ(β[γ (π₯β1/2)γ^2 β5/4] ) γ ππ₯ I_2 = 1/2 β«1βγβ(5/4 γ β(π₯β1/2)γ^2 ) γ ππ₯ I_2 = 1/2 β«1βγβ((β5/4)^2 γ β(π₯β1/2)γ^2 ) γ ππ₯ I_2 = 1/2 ((π₯ β 1/2)/2 β((β5/4)^2 γ β(π₯β1/2)γ^2 )+(β5/2)^2/2 γπ ππγ^(β1) ((π₯ + 1/2)/(β5/2))+ C_2 ) I_2 = 1/2 (((2π₯ β1)/2)/2 β(5/4β[π₯^2 +1/4β2π₯(1/2)] ) +(5/4)/2 γπ ππγ^(β1) (((2π₯ β 1)/2)/(β5/2))+ C_2 ) It is of form β(π^2βπ₯^2 ) ππ₯=1/2 π₯β(π^2βπ₯^2 )+π^2/2 γπ ππγ^(β1) π₯/π+ C_2 Replacing x by (x β 1/2) and a by β5/2 , we get I_2 = 1/2 ((2π₯ β1)/4 β(5/4β[π₯^2 +1/4 βπ₯] ) +5/8 γπ ππγ^(β1) ((2π₯ β 1)/β5)+ C_2 ) I_2 " = " (2π₯ β1)/8 β(1+π₯+π₯^2 ) +5/16 γπ ππγ^(β1) ((2π₯ β 1)/β5)+C_3 Putting the value of I_1 and I_2 in (1) β«1βπ₯ β(1+ π₯βπ₯^2 ) dπ₯ = (β1)/2 β«1βγ[1β2π₯] β(1+π₯βπ₯^2 )γ ππ₯+β«1ββ(1+π₯βπ₯^2 ) ππ₯ = (β1)/3 γ(1+π₯βπ₯^2)γ^(3/2) + C_1 + ((2π₯ β1))/8 β(1+π₯βπ₯^2 )+5/16 γπ ππγ^(β1) ((2π₯ β 1)/β5)+ C_3 = (βπ)/π γ(π+πβπ^π)γ^(π/π) +π/π (ππ βπ) β(π+πβπ^π )+ π/ππ γπππγ^(βπ) ((ππ β π)/βπ)+ πͺ