Slide24.JPG

Slide25.JPG
Slide26.JPG
Slide27.JPG
Slide28.JPG


Transcript

Example 27 (Method 1) Evaluate ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 ) 𝑑π‘₯ Step 1 : Let F(π‘₯)=∫1β–’tan^(βˆ’1)⁑π‘₯/(1+γ€– π‘₯γ€—^2 ) 𝑑π‘₯ Put tan^(βˆ’1)⁑π‘₯=𝑑 Differentiating w.r.t.π‘₯ 𝑑/𝑑π‘₯ (tan^(βˆ’1)⁑π‘₯ )=𝑑𝑑/𝑑π‘₯ 1/(1 + π‘₯^2 )=𝑑𝑑/𝑑π‘₯ Therefore, ∫1β–’tan^(βˆ’1)⁑π‘₯/(1+γ€– π‘₯γ€—^2 ) 𝑑π‘₯=∫1▒〖𝑑/(1+π‘₯^2 ) Γ— (1+π‘₯^2 )𝑑𝑑〗 =∫1▒〖𝑑 𝑑𝑑〗 =𝑑^2/2 Putting 𝑑=γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑π‘₯ =(tan^(βˆ’1)⁑π‘₯ )^2/2 Hence 𝐹(π‘₯)=(tan^(βˆ’1)⁑π‘₯ )^2/2 Step 2 : ∫1β–’γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 )=𝐹(1)βˆ’F(0) =1/2 (tan^(βˆ’1)⁑1 )^2 βˆ’1/2 (tan^(βˆ’1)⁑0 )^2 =1/2 (πœ‹/4)^2βˆ’1/2 (0)^2 =1/2 πœ‹^2/16 = 𝝅^𝟐/πŸ‘πŸ Example 27 (Method 2) Evaluate ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 ) 𝑑π‘₯ Put 𝑑=tan^(βˆ’1)⁑π‘₯ Differentiating w.r.t.π‘₯ 𝑑𝑑/𝑑π‘₯=𝑑/𝑑π‘₯ (tan^(βˆ’1)⁑π‘₯ ) 𝑑𝑑/𝑑π‘₯=1/(1 + π‘₯^2 ) (1+π‘₯^2 )𝑑𝑑=𝑑π‘₯ Hence when value of x varies from 0 to 1, value of t varies from 0 to πœ‹/4 Therefore, ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 )=∫_0^(πœ‹/4)▒𝑑/(1 + π‘₯^2 ) 𝑑π‘₯ (1+π‘₯^2 )𝑑𝑑 =∫_0^(πœ‹/4)β–’γ€– 𝑑 𝑑𝑑〗 =[𝑑^2/2]_0^(πœ‹/4) =1/2 [(πœ‹/4)^2βˆ’(0)^2 ] =1/2 Γ— πœ‹^2/16 = 𝝅^𝟐/πŸ‘πŸ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.