Example 6 (iii) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important You are here
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 (Supplementary NCERT) Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Example 6 Find the following integrals (iii) ∫1▒1/(1 + tan𝑥 ) 𝑑𝑥 The given function cannot be integrated by direct substitution, so we have to simplify the given function . Simplifying the given function and integrating. ∫1▒1/(1 + tan𝑥 ) .𝑑𝑥 = ∫1▒1/(1 + sin𝑥/cos𝑥 ) .𝑑𝑥 = ∫1▒1/((cos𝑥 + sin𝑥)/cos𝑥 ) .𝑑𝑥 (𝑈𝑠𝑖𝑛𝑔 tan𝑥=sin𝑥/cos𝑥 ) = ∫1▒cos𝑥/(sin𝑥 + cos𝑥 ) .𝑑𝑥 Multiplying and dividing by 2 = ∫1▒(2 cos𝑥)/(2 (sin𝑥 + cos𝑥 ) ) .𝑑𝑥 = ∫1▒(cos𝑥 + cos𝑥)/(2 (sin𝑥 + cos𝑥 ) ) .𝑑𝑥 Adding and subtracting sin𝑥 in the numerator = ∫1▒(cos𝑥 + cos𝑥 + sin𝑥 − sin𝑥)/(2 (sin𝑥 + cos𝑥 ) ) .𝑑𝑥 = 1/2 ∫1▒(sin𝑥 + cos𝑥 + cos𝑥 − sin𝑥)/(sin𝑥 + cos𝑥 ) .𝑑𝑥 = 1/2 ∫1▒[(sin𝑥 + cos𝑥)/(sin𝑥 + cos𝑥 )+〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 )] 𝑑𝑥 = 1/2 ∫1▒[1+〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 )] 𝑑𝑥 = 1/2 [∫1▒〖1.𝑑𝑥+∫1▒〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 )〗 𝑑𝑥] = 1/2 [𝑥+𝐶1+∫1▒〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 ) 𝑑𝑥] Take, I1 =∫1▒〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 ) .𝑑𝑥 Let sin𝑥 + cos𝑥=𝑡 Differentiate both sides 𝑤.𝑟.𝑡.𝑥. cos𝑥−sin𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(cos𝑥 − sin𝑥 ) Putting value of (𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥 ) and 𝑑𝑥 in I1 . I1=∫1▒〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 ) .𝑑𝑥 I1 = ∫1▒〖cos𝑥 − sin〗𝑥/𝑡 .𝑑𝑡/(cos𝑥 − sin𝑥 ) I1 =∫1▒1/𝑡 .𝑑𝑡 Let sin𝑥 + cos𝑥=𝑡 Differentiate both sides 𝑤.𝑟.𝑡.𝑥. cos𝑥−sin𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(cos𝑥 − sin𝑥 ) Putting value of (𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥 ) and 𝑑𝑥 in I1 . I1=∫1▒〖cos𝑥 − sin〗𝑥/(sin𝑥 + cos𝑥 ) .𝑑𝑥 I1 = ∫1▒〖cos𝑥 − sin〗𝑥/𝑡 .𝑑𝑡/(cos𝑥 − sin𝑥 ) I1 =∫1▒1/𝑡 .𝑑𝑡 (𝑈𝑠𝑖𝑛𝑔 ∫1▒〖1/𝑥 .〗 𝑑𝑥=log〖 |𝑥|〗+𝐶) (𝑈𝑠𝑖𝑛𝑔 𝑡=sin𝑥+cos𝑥 ) (𝑊ℎ𝑒𝑟𝑒 𝐶=𝐶1/2+𝐶2/2)