


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii) You are here
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 (Supplementary NCERT) Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Example 27 Evaluate the following integrals: (iii) β«_1^2β(π₯ ππ₯)/((π₯ + 1) (π₯ + 2) ) ππ₯ πΉ(π₯)=β«1β(π₯ ππ₯)/(π₯ + 1)(π₯ + 2) We can write the integrate as : π₯/(π₯ + 1)(π₯ + 2) =A/(π₯ + 1)+B/(π₯ + 2) π₯/(π₯ + 1)(π₯ + 2) =(A(π₯ + 2) + B(π₯ + 1))/(π₯ + 1)(π₯ + 2) Canceling denominators π₯=A(π₯+2)+B(π₯+1) Putting π=βπ β2=A(2+2)+B(2+1) β2=A Γ0+B(β1) β2=βB B=2 Putting π=βπ β1=A(β1+2)+B(β1+1) β1=A(1)+B(0) β1=A A=β1 Therefore π₯/(π₯ + 1)(π₯ + 2) =(β1)/(π₯ + 1)+2/(π₯ + 2) Integrating w.r.t.π₯ β«1βγπ₯/(π₯+1)(π₯+2) =β«1βγ(β1)/((π₯+1) ) ππ₯γ+β«1βγ2/(π₯+2) ππ₯γγ =βπππ|π₯+1|+2πππ|π₯+2| =βπππ|π₯+1|+πππ|π₯+2|^2 =πππ|π₯+2|^2βπππ|π₯+1| =πππ|(π₯ + 2)^2/(π₯ + 1)| Hence πΉ(π₯)=πππ|(π₯ + 2)^2/(π₯ + 1)| Now, β«_1^2βγπ₯/(π₯ + 1)(π₯ + 2) ππ₯γ=πΉ(2)βπΉ(1) β«_1^2βγπ₯/(π₯ + 1)(π₯ + 2) ππ₯γ=πππ|(2 + 2)^2/(2 + 1)|βπππ|(1 + 2)^2/(1 + 1)| (π logβ‘γπ=logβ‘γπ^π γ γ ) (logβ‘Aβlogβ‘B=πππ A/π΅) =πππ|(4)^2/3|βπππ|(3)^2/2| =πππ|(4^2/3)/(3^2/2)| =πππ|4^2/3 Γ 2/3^2 | =πππ|16/3 Γ 2/9| =πππ|32/27 | =π₯π¨π β‘(ππ/ππ) (logβ‘Aβlogβ‘B=πππ A/π΅) (logβ‘Aβlogβ‘B=πππ A/π΅)