Check sibling questions

Example 43 - Evaluate integral |x sin (pi x)| dx - Limit -1 to 3pi/2

Example 43 - Chapter 7 Class 12 Integrals - Part 2
Example 43 - Chapter 7 Class 12 Integrals - Part 3 Example 43 - Chapter 7 Class 12 Integrals - Part 4 Example 43 - Chapter 7 Class 12 Integrals - Part 5 Example 43 - Chapter 7 Class 12 Integrals - Part 6 Example 43 - Chapter 7 Class 12 Integrals - Part 7 Example 43 - Chapter 7 Class 12 Integrals - Part 8 Example 43 - Chapter 7 Class 12 Integrals - Part 9 Example 43 - Chapter 7 Class 12 Integrals - Part 10

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 41 (Introduction) Evaluate ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹ π‘₯) | 𝑑π‘₯ To find sign of |π‘₯ sin⁑(πœ‹ π‘₯) | in the interval, let us check sign of x and sin⁑〖 (πœ‹π‘₯) γ€—separately π‘₯ > 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—> 0 π‘₯ < 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—< 0 𝒙 π’”π’Šπ’β‘γ€–(𝝅𝒙) γ€—< 0 π‘₯ < 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—> 0 π‘₯ > 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—< 0 Sign of x We have Interval βˆ’1< π‘₯ < 3/2 Sign of 𝐬𝐒𝐧⁑〖(𝝅𝒙)γ€— Here, βˆ’1≀π‘₯≀3/2 βˆ’πœ‹ β‰€πœ‹π‘₯≀3πœ‹/2 Let πœƒ=πœ‹π‘₯ ∴ βˆ’πœ‹ ≀θ≀3πœ‹/2 From graph it is seen, Thus, Sign for 𝐬𝐒𝐧⁑〖(𝝅𝒙)γ€— is Now, Sign for π‘₯ sin⁑(πœ‹π‘₯) in interval –1 ≀ x ≀ 3/2 is So, we can write |π‘₯ 𝑠𝑖𝑛 (Ο€π‘₯)|={β–ˆ(π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— βˆ’1 ≀ π‘₯ ≀ 1@&βˆ’π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— 1 ≀ π‘₯ ≀ 3/2)─ Example 41 Evaluate ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹ π‘₯) | 𝑑π‘₯ Hence, |π‘₯ 𝑠𝑖𝑛 (Ο€π‘₯)|={β–ˆ(π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— βˆ’1 ≀ π‘₯ ≀ 1@&βˆ’π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— 1 ≀ π‘₯ ≀ 3/2)─ Therefore, we can write ∴ ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹π‘₯) | 𝑑π‘₯ = ∫_(βˆ’1)^1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯ βˆ’βˆ«_1^(3/2)β–’γ€–π‘₯ 𝑠𝑖𝑛〗〗 γ€—(πœ‹π‘₯) 𝑑π‘₯ Solving ∫1▒〖𝒙 π’”π’Šπ’β‘γ€– (𝝅𝒙) 𝒅𝒙〗 γ€— separately ∫1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯γ€— γ€— = x ∫1β–’sin⁑〖(πœ‹π‘₯)βˆ’βˆ«1β–’(𝑑(π‘₯)/𝑑π‘₯ ∫1β–’sin⁑〖(πœ‹π‘₯) γ€— ) γ€— 𝑑π‘₯ = x ((βˆ’cos⁑〖(πœ‹π‘₯))γ€—)/πœ‹βˆ’βˆ«1β–’1((βˆ’cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹) 𝑑π‘₯ = (βˆ’ π‘₯ cos⁑〖(πœ‹π‘₯) γ€—)/πœ‹+∫1β–’cos⁑〖(πœ‹π‘₯)γ€—/πœ‹ 𝑑π‘₯ = (βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+ sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 Using by parts ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓^β€² (π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = x & g(x) = sin (πœ‹x) Putting limits ∫_(βˆ’πŸ)^πŸβ–’γ€–π’™ 𝐬𝐒𝐧⁑〖𝝅𝒙 𝒅𝒙〗 γ€— = [(βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ]_(βˆ’1)^1 = ((βˆ’1 cosβ‘πœ‹)/πœ‹+sinβ‘πœ‹/πœ‹^2 ) βˆ’((βˆ’(βˆ’1)cos⁑〖(βˆ’πœ‹)γ€—)/πœ‹+sin⁑〖(βˆ’πœ‹)γ€—/πœ‹^2 ) = ((βˆ’1 Γ— (βˆ’1))/πœ‹+0/πœ‹^2 ) βˆ’(cosβ‘πœ‹/πœ‹+γ€–βˆ’ sinγ€—β‘πœ‹/πœ‹^2 ) = (1/πœ‹+0)βˆ’((βˆ’1)/πœ‹+0) = 1/πœ‹+1/πœ‹ = 2/πœ‹ Putting limits ∫_𝟏^(πŸ‘/𝟐)▒〖𝒙 𝐬𝐒𝐧⁑〖𝝅𝒙 𝒅𝒙〗 γ€— = [(βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ]_1^(3/2) = (((βˆ’3)/2 cos⁑(3πœ‹/2))/πœ‹+sin⁑((3πœ‹ )/2)/πœ‹^2 )βˆ’((βˆ’1 cosβ‘πœ‹)/πœ‹+sinβ‘πœ‹/πœ‹^2 ) = (0+((βˆ’1))/πœ‹^2 )βˆ’((βˆ’1 Γ— βˆ’1)/πœ‹+0/πœ‹^2 ) = (βˆ’1)/πœ‹^2 βˆ’1/πœ‹ Now, ∴ ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹π‘₯) | 𝑑π‘₯ = ∫_(βˆ’1)^1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯ βˆ’βˆ«_1^(3/2)β–’γ€–π‘₯ 𝑠𝑖𝑛〗〗 γ€—(πœ‹π‘₯) 𝑑π‘₯ = 2/πœ‹βˆ’((βˆ’1)/πœ‹^2 βˆ’1/πœ‹) = 2/πœ‹+1/πœ‹^2 +1/πœ‹ = πŸ‘/𝝅+𝟏/𝝅^𝟐

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.