





Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important You are here
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 Important Deleted for CBSE Board 2023 Exams
Example 26 Deleted for CBSE Board 2023 Exams
Example 27 (i)
Example 27 (ii) Important
Example 27 (iii)
Example 27 (iv) Important
Example 28
Example 29
Example 30 Important
Example 31
Example 32
Example 33
Example 34 Important
Example 35 Important
Example 36 Important
Example 37
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Example 43 Important
Example 44 Important
Example 25 (Supplementary NCERT) Important Deleted for CBSE Board 2023 Exams
Last updated at Aug. 20, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Example 10 Find the following integrals: (ii) β«1β(π₯ + 3)/β(5 β 4π₯ β π₯^2 ) ππ₯ We can write numerator as π₯+3= Aπ/ππ₯ [βπ₯^2β4π₯+5]+ B π₯+3= A[β2π₯β4]+ B π₯+3=β2π΄π₯β4A+B Finding A & B Comparing coefficient of π₯ π₯=β2π΄π₯ 1 =β2A A=(β1)/( 2) Comparing constant term 3=β4A+B 3=β4((β1)/( 2))+B 3=2+B B=3β2=1 Now, we know that π₯+3=A[β2π₯β4]+B π₯+3=(β1)/( 2) [β2π₯β4]+1 Now, our equation is β«1β(π₯+3)/β(5 β 4π₯ + π₯^2 ).ππ₯=β«1β(1/2 [β2π₯ β 4]+1)/β(5 β 4π₯ β π₯^2 ).ππ₯ =β«1β((β1)/2 [β2π₯ β 4]+1)/β(5 β 4π₯ + π₯^2 ) ππ₯+β«1β1/β(5 β 4π₯ β π₯^2 ) ππ₯ =(β1)/2 β«1β(β2π₯ β 4)/β(5 β 4π₯ + π₯^2 ) ππ₯+β«1β1/β(5 β 4π₯ β π₯^2 ) ππ₯ Solving I1 I1 = (β1)/2 β«1βγ(β2π₯ β 4)/β(βπ₯^2 β 4π₯ + 5).ππ₯γ Let t = βπ₯^2 β 4π₯ + 5 Differentiating both sides w.r.t. π₯ β2π₯ β 4 =ππ‘/ππ₯ ππ₯=ππ‘/(β 2π₯ β 4) Now, I1 = (β1)/( 2) β«1βγ(β2π₯ β 4)/β(βπ₯^2 β 4π₯ + 5).ππ₯γ Putting the values of (βπ₯^2β4π₯+5) and ππ₯ I1 = (β1)/( 2) β«1βγ(β2π₯ β 4)/βπ‘.ππ‘/((β2π₯ β4) )γ I1 = (β1)/( 2) β«1βγ1/βπ‘.ππ‘γ I1 = (β1)/( 2) β«1βγ1/(π‘)^(1/2) .ππ‘γ I1 = (β1)/( 2) β«1βγ(π‘)^((β1)/2) ππ‘γ I1 = (β1)/( 2) π‘^((β1)/( 2) + 1)/(((β1)/( 2) + 1) )+πΆ1 I1 = (β1)/( 2) π‘^(1/( 2) )/((1/2) )+πΆ1 I1 = β π‘^(1/( 2) )+πΆ1 I1 = ββπ‘+πΆ1 Putting back π‘=π₯^2β4π₯+5) I1 = ββ(βπ₯^2β4π₯+5)+πΆ1 Solving π°π I2 = β«1βγ1/β(5 β 4π₯ β π₯^2 ).ππ₯γ I2 = β«1βγ1/β(β(π₯^2 + 4π₯ β 5) ) ππ₯γ I2 = β«1βγ1/β(β[π₯^2 + 2(2)(π₯) β 5] ) ππ₯γ I2 = β«1βγ1/β(β[π₯^2 + 2(2)(π₯) + (2)^2 β (2)^2 β 5] ) ππ₯γ I2 = β«1βγ1/β(β[(π₯ + 2)^2 β 4 β 5] ) ππ₯γ I2 = β«1βγ1/β(β[(π₯ + 2)^2 β 9] ) ππ₯γ I2 = β«1βγ1/β(9 β (π₯ + 2)^2 ) ππ₯γ I2 = β«1βγ1/β((3)^2 β (π₯ + 2)^2 ) ππ₯γ It is of form β«1βγ1/β(π^2 β π₯^2 ).ππ₯=γπ ππγ^(β1)β‘γπ₯/π+πΆ2γ γ Replacing π₯ by (π₯+2) and a by 3, we get I2 = sin^(β1)β‘γ((π₯ + 2)/3)+πΆ2γ Now, Putting values of I1 and I2 in (1) β«1βγ(π₯ + 3)/β(5 β 4π₯ β π₯^2 ).ππ₯=(β1)/( 2) β«1β(β 2π₯ β 4)/β(5 β 4π₯ β π₯^2 )γ+β«1β1/β(5 β 4π₯ β π₯^2 ) ππ₯ =ββ(5 β 4π₯ β π₯^2 )+πΆ1+sin^(β1)β‘((π₯ + 2)/3)+πΆ2 =ββ(π β ππ β π^π )+γπππγ^(βπ)β‘γ((π + π)/π)+πͺγ