Check sibling questions

Example 39 - Evaluate integral x4 dx / (x - 1) (x2 + 1) - Examples

Example 39 - Chapter 7 Class 12 Integrals - Part 2
Example 39 - Chapter 7 Class 12 Integrals - Part 3 Example 39 - Chapter 7 Class 12 Integrals - Part 4 Example 39 - Chapter 7 Class 12 Integrals - Part 5 Example 39 - Chapter 7 Class 12 Integrals - Part 6 Example 39 - Chapter 7 Class 12 Integrals - Part 7 Example 39 - Chapter 7 Class 12 Integrals - Part 8 Example 39 - Chapter 7 Class 12 Integrals - Part 9

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 37 Evaluate ∫1β–’(π‘₯^4 𝑑π‘₯)/(π‘₯ βˆ’1)(π‘₯^2 + 1) Let I = ∫1β–’(π‘₯^4 𝑑π‘₯)/(π‘₯ βˆ’1)(π‘₯^2 + 1) 𝑑π‘₯ We can write π‘₯^4/(π‘₯ βˆ’1)(π‘₯^2 + 1) = π‘₯^4/(π‘₯^3 βˆ’ π‘₯^2+ π‘₯ βˆ’ 1) Dividing Numerator by denominator as follows. Hence π‘₯^4 = (π‘₯^3βˆ’π‘₯^2+π‘₯+1) (π‘₯+1)+1 Thus, π‘₯^4/(π‘₯^3 βˆ’ π‘₯^2 + π‘₯ + 1) = (π‘₯+1)+1/(π‘₯^3 βˆ’ π‘₯^2 + π‘₯ + 1) = (π‘₯+1)+1/((π‘₯ βˆ’ 1) (π‘₯^2 +1) ) Now, we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= ((𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1))/((π‘₯^2 + 1)(π‘₯ βˆ’1)) Canceling denominator 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) Putting x = 1 1 = (𝐴(1) + 𝐡)(1βˆ’1) + 𝐢 ((βˆ’1)^2 + 1) 1 = (𝐴+𝐡)(0)+ 𝐢 (1+1) 1 = 2𝐢 𝐢=1/2 Putting x = 0 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) 1 = (𝐴(0) + 𝐡)(0βˆ’1) + 𝐢 (0^2+1) 1 = (𝐡)(βˆ’1) + 𝐢 (1) 1 = 𝐢 βˆ’"B" B =πΆβˆ’1 B =1/2 βˆ’1 B =(βˆ’1)/2 Putting x = βˆ’ 1 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) 1 = (𝐴(βˆ’1)+ 𝐡)(βˆ’1βˆ’1) + 𝐢 ((βˆ’1)^2+1) 1 = (βˆ’π΄+𝐡)(βˆ’2)+𝐢 (1+1) 1 = (π΄βˆ’π΅)2+𝐢 (2) 1/2=π΄βˆ’π΅+𝐢 𝐴=1/2+π΅βˆ’πΆ 𝐴 =1/2βˆ’1/2βˆ’1/2 𝐴 =(βˆ’1)/2 Hence we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) ) = (βˆ’ 1/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) + (1/2)/(π‘₯ βˆ’ 1) = (βˆ’1)/2 ( π‘₯)/(π‘₯^2 + 1) βˆ’1/2 1/(π‘₯^2 + 1)+ 1/2(π‘₯ βˆ’ 1) Hence we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) ) = (βˆ’ 1/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) + (1/2)/(π‘₯ βˆ’ 1) = (βˆ’1)/2 ( π‘₯)/(π‘₯^2 + 1) βˆ’1/2 1/(π‘₯^2 + 1)+ 1/2(π‘₯ βˆ’ 1) Therefore, we can write I=∫1β–’γ€–(π‘₯+1)+1/(π‘₯^2 + 1)(π‘₯ βˆ’ 1) 𝑑π‘₯γ€— =∫1β–’[(π‘₯+1)βˆ’1/2 π‘₯/((π‘₯^2 + 1) ) 𝑑π‘₯βˆ’βˆ«1β–’γ€–1/2 1/(π‘₯^2 + 1) 𝑑π‘₯+∫1β–’γ€–1/2 1/((π‘₯ βˆ’ 1) ) 𝑑π‘₯γ€—γ€—] =π‘₯^2/2+π‘₯βˆ’1/2 ∫1β–’γ€–π‘₯/(π‘₯^2 + 1)βˆ’1/2 ∫1β–’γ€–1/(π‘₯^2 + 1) 𝑑π‘₯+1/2 ∫1β–’γ€–1/(π‘₯ βˆ’ 1) 𝑑π‘₯γ€—γ€—γ€— ∴ I = π‘₯^2/2+π‘₯ – 1/2 I"1 βˆ’ " 1/2 I"2 + " 1/2 I"3" Solving π‘°πŸ I1=∫1β–’γ€–π‘₯/(π‘₯^2 + 1) 𝑑π‘₯γ€— Put 𝑑=π‘₯^2+1 Differentiating w.r.t. π‘₯ 𝑑𝑑/𝑑π‘₯=2π‘₯+0 𝑑𝑑/2π‘₯=𝑑π‘₯ Therefore, ∫1β–’γ€–(π‘₯ 𝑑π‘₯)/(π‘₯^2 + 1)=∫1β–’π‘₯/𝑑 𝑑𝑑/2π‘₯γ€—=∫1β–’1/2 𝑑𝑑/𝑑=1/2 π‘™π‘œπ‘”|𝑑|+𝐢1 Putting 𝑑=π‘₯^2+1 =1/2 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1 And, I2=∫1β–’γ€–1/(π‘₯^2 + 1) 𝑑π‘₯γ€—=tan^(βˆ’1)⁑〖π‘₯+γ€— 𝐢2 I3=∫1β–’γ€–1/(π‘₯ βˆ’1) 𝑑π‘₯γ€—=π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3 Hence 𝐼=π‘₯^2/2+π‘₯βˆ’1/2 𝐼1βˆ’1/2 𝐼2+1/2 𝐼3 =π‘₯^2/2+π‘₯βˆ’1/2 (1/2 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1)βˆ’1/2 (γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (π‘₯)+C_2 )βˆ’1/2 (π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3) =π‘₯^2/2+π‘₯βˆ’1/4 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1/2βˆ’1/2 tan^(βˆ’1)⁑〖π‘₯ 𝐢2/2+1/2 π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3/2γ€— =𝒙^𝟐/𝟐+𝒙+𝟏/𝟐 π’π’π’ˆ|π’™βˆ’πŸ|βˆ’πŸ/πŸ’ π’π’π’ˆ(𝒙^𝟐+𝟏)βˆ’πŸ/𝟐 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑〖𝒙+π‘ͺγ€—

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.