


Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important You are here
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 Important Deleted for CBSE Board 2023 Exams
Example 26 Deleted for CBSE Board 2023 Exams
Example 27 (i)
Example 27 (ii) Important
Example 27 (iii)
Example 27 (iv) Important
Example 28
Example 29
Example 30 Important
Example 31
Example 32
Example 33
Example 34 Important
Example 35 Important
Example 36 Important
Example 37
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Example 43 Important
Example 44 Important
Example 25 (Supplementary NCERT) Important Deleted for CBSE Board 2023 Exams
Last updated at March 30, 2023 by Teachoo
Example 6 Find the following integrals (ii) β«1βsinβ‘π₯/sinβ‘(π₯ + π) ππ₯ Let π₯+π=π‘ Differentiate both sides π€.π.π‘.π₯. 1=ππ‘/ππ₯ ππ₯=ππ‘ Hence, our equation becomes β«1βsinβ‘π₯/sinβ‘(π₯ + π) ππ₯ Putting the value of (π₯β‘+ π) and ππ₯ = β«1βsinβ‘π₯/sinβ‘π‘ ππ₯" " = β«1βπππβ‘(π β π)/sinβ‘π‘ ππ‘" " = β«1β(πππβ‘π ππ¨π¬β‘π β π¬π’π§β‘π ππ¨π¬β‘π)/sinβ‘π‘ ππ‘ = β«1β(sinβ‘γπ‘ cosβ‘π γ/sinβ‘π‘ β (sinβ‘π cosβ‘π‘)/sinβ‘π‘ ) ππ‘ = β«1βsinβ‘γπ‘ cosβ‘π γ/sinβ‘π‘ . ππ‘ββ«1β(sinβ‘π cosβ‘π‘)/sinβ‘π‘ . ππ‘ = β«1βcosβ‘π . ππ‘ββ«1βγsinβ‘π coπ‘β‘π‘ γ . ππ‘ = cos πβ«1β1. ππ‘βsinβ‘π β«1βπππβ‘π . π π = cos π (π‘)βsinβ‘π πππβ‘|πππβ‘π |+ πΆ = π‘.cosβ‘πβπ ππβ‘π πππβ‘|π ππβ‘π‘ |+ πΆ Putting back value of t = x + a (Using x + a = t β΄ x = t β a) (β(ππ πππ sinβ‘(πβπ)[email protected]β‘π cosβ‘πβsinβ‘π cosβ‘π )) ( β«1βcoπ‘β‘π₯ ππ₯=logβ‘|sinβ‘π₯ | ) = β«1βπππβ‘(π β π)/sinβ‘π‘ ππ‘" " = β«1βπππβ‘γπ ππ¨π¬β‘π βπ¬π’π§β‘π ππ¨π¬β‘π γ/sinβ‘π‘ ππ‘ = β«1β(sinβ‘γπ‘ cosβ‘π γ/sinβ‘π‘ β (sinβ‘π cosβ‘π‘)/sinβ‘π‘ ) ππ‘ = β«1βsinβ‘γπ‘ cosβ‘π γ/sinβ‘π‘ . ππ‘ββ«1β(sinβ‘π cosβ‘π‘)/sinβ‘π‘ . ππ‘ = β«1βcosβ‘π . ππ‘ββ«1βγsinβ‘π coπ‘β‘π‘ γ . ππ‘ = cos πβ«1β1. ππ‘βsinβ‘π β«1βπππβ‘π . π π = cos π (π‘)βsinβ‘π [πππβ‘|πππβ‘π | ]+πΆ1 = π‘.cosβ‘πβsinβ‘π [logβ‘|sinβ‘π‘ | ]+ πΆ1 Putting back value of t = x + a = (π₯+π) cosβ‘πβsinβ‘π [logβ‘|sinβ‘(π₯+π) | ]+ πΆ1 (Using x + a = t x = t β a) (β(ππ πππ sinβ‘(πβπ)[email protected]β‘π cosβ‘πβsinβ‘π cosβ‘π )) ( β«1βcoπ‘β‘π₯ ππ₯=logβ‘|sinβ‘π₯ | ) = (π₯+π) cosβ‘πβsinβ‘π logβ‘γ |sinβ‘(π₯+π) |γ+ πΆ = π₯ cosβ‘π+γπ cosγβ‘πβsinβ‘π logβ‘|sinβ‘(π₯+π) |+πΆ = π₯ cosβ‘πβsinβ‘π logβ‘|sinβ‘(π₯+π) |+γπ πππγβ‘π+πͺ = π πππβ‘πβπ¬π’π§β‘γ πγ πππβ‘|πππβ‘(π+π) |+ππ (πβπππ πΆ1=π cosβ‘π+πΆ)