Slide18.JPG

Slide19.JPG
Slide20.JPG
Slide21.JPG
Slide22.JPG Slide23.JPG

Go Ad-free

Transcript

Example 26 (Method 1) Evaluate ∫_(−1)^1▒〖5𝑥^4 √(𝑥^5+1)〗 𝑑𝑥 Step 1 :- Let F(𝑥)=∫1▒〖5𝑥^4 √(𝑥^5+1)〗 𝑑𝑥 Putting 𝑡=𝑥^5+1 Differentiating w.r.t.𝑥 𝑑𝑡/𝑑𝑥=5𝑥^4 𝑑𝑡/(5𝑥^4 )=𝑑𝑥 Therefore we can write ∫1▒〖5𝑥^4 √(𝑥^5+1) 𝑑𝑥=∫1▒〖5𝑥^4 √𝑡 . 𝑑𝑡/(5𝑥^4 )〗〗 =∫1▒√𝑡 𝑑𝑡 =∫1▒〖𝑡^(1/2) 𝑑𝑡〗 =〖𝑡 〗^(1/2 +1)/(1/2 +1) =2/3 𝑡^(3/2) Putting back 𝑡=𝑥^5+1 =2/3 (𝑥^5+1)^(3/2) Hence , F(𝑥)=2/3 (𝑥^5+1)^(3/2) Step 2 :- ∫_(−1)^1▒〖5𝑥^4 〗 √(𝑥^5+1) 𝑑𝑥=𝐹(1)−𝐹(−1) =2/3 (1^5+1)^(3/2)−2/3 ((−1)^5+1)^(3/2) =2/3 (1+1)^(3/2)−2/3 (−1+1)^(3/2) =2/3 (2)^(3/2)−0 =2/3 2√2 =(𝟒√𝟐)/𝟑 Example 26 (Method 2) Evaluate ∫_(−1)^1▒〖5𝑥^4 √(𝑥^5+1)〗 𝑑𝑥 Put 𝑡=𝑥^5+1 Differentiating w.r.t. 𝑥 𝑑𝑡/𝑑𝑥=𝑑/𝑑𝑥 (𝑥^5+1) 𝑑𝑡/𝑑𝑥=5𝑥^4 𝑑𝑡/(5𝑥^4 )=𝑑𝑥 Hence when 𝑥 varies from 𝑥=−1 to 1, 𝑡 varies from 0 to 2 Therefore, ∫_(−1)^1▒〖5𝑥^4 √(1+𝑥^5 ) 𝑑𝑥=∫_0^2▒〖5𝑥^4 √𝑡 𝑑𝑡/(5𝑥^4 )〗〗 =∫1_0^2▒〖√𝑡 𝑑𝑡〗 =[𝑡^(1/2 + 1)/(1/2 +1)]_0^2 =[𝑡^(3/2)/(3/2)]_0^2 =[2/3 𝑡^(3/2) ]_0^2 =2/3 (2^(3/2)−0^(3/2) ) =2/3 2^(3/2) =2/3 ×2√2 =𝟒/𝟑 √𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.