



Last updated at July 19, 2019 by Teachoo
Transcript
Example 36 Evaluate 0 2 log sin Let I1= 0 2 I1= 0 2 2 I1= 0 2 cos Adding (1) and (2) i.e. (1) + (2) I1 + I1 = 0 2 sin + 0 2 cos 2I1 = 0 2 log sin cos 2I1 = 0 2 log 2sin cos 2 2I1 = 0 2 log 2sin cos 2 2I1 = 0 2 log sin 2 2 2I1 = 0 2 log sin 2 0 2 log 2 Solving I2= 0 2 log sin 2 Let 2 = Differentiating both sides w.r.t. 2= = 2 Putting the values of t and and changing the limits, I2 = 0 2 log sin 2 I2 = 0 log sin 2 I2 = 1 2 0 log sin Here, = log 2 = 2 = log 2 = log sin As, = 2 I2 = 1 2 0 log sin = 1 2 2 0 2 log sin . = 0 2 log sin . I2= 0 2 log sin Putting the value of I2 in equation (3), we get 2I1 = 0 2 log sin 2 0 2 log 2 2I1 = 0 2 log sin log 2 0 2 1. 2I1 = I1 log 2 0 2 2I1 I1= log 2 2 0 I1= log 2 2 =
Examples
Example 2
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 Important
Example 26
Example 27 Important
Example 28
Example 29
Example 30 Important
Example 31
Example 32
Example 33
Example 34 Important
Example 35 Important
Example 36 Important You are here
Example 37
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Example 43 Important
Example 44 Important
Example 25 (Supplementary NCERT) Important
About the Author