# Example 36 - Chapter 7 Class 12 Integrals

Last updated at May 29, 2018 by Teachoo

Last updated at May 29, 2018 by Teachoo

Transcript

Example 36 Evaluate 0 2 log sin Let I1= 0 2 I1= 0 2 2 I1= 0 2 cos Adding (1) and (2) i.e. (1) + (2) I1 + I1 = 0 2 sin + 0 2 cos 2I1 = 0 2 log sin cos 2I1 = 0 2 log 2sin cos 2 2I1 = 0 2 log 2sin cos 2 2I1 = 0 2 log sin 2 2 2I1 = 0 2 log sin 2 0 2 log 2 Solving I2= 0 2 log sin 2 Let 2 = Differentiating both sides w.r.t. 2= = 2 Putting the values of t and and changing the limits, I2 = 0 2 log sin 2 I2 = 0 log sin 2 I2 = 1 2 0 log sin Here, = log 2 = 2 = log 2 = log sin As, = 2 I2 = 1 2 0 log sin = 1 2 2 0 2 log sin . = 0 2 log sin . I2= 0 2 log sin Putting the value of I2 in equation (3), we get 2I1 = 0 2 log sin 2 0 2 log 2 2I1 = 0 2 log sin log 2 0 2 1. 2I1 = I1 log 2 0 2 2I1 I1= log 2 2 0 I1= log 2 2 =

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9 Important

Example 10 Important

Example 11

Example 12

Example 13

Example 14

Example 15 Important

Example 16

Example 17

Example 18

Example 19

Example 20 Important

Example 21

Example 22 Important

Example 23

Example 24

Example 25 Important

Example 26

Example 27 Important

Example 28

Example 29

Example 30 Important

Example 31

Example 32

Example 33

Example 34 Important

Example 35

Example 36 Important You are here

Example 37

Example 38

Example 39

Example 40 Important

Example 41 Important

Example 42

Example 43 Important

Example 44 Important

Example 25 (Supplementary NCERT)

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.