Check sibling questions

Β 

Example 9 - Chapter 7 Class 12 Integrals - Part 7

Example 9 - Chapter 7 Class 12 Integrals - Part 8

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 9 Find the following integrals: (iii) ∫1▒𝑑π‘₯/(√(5π‘₯^2 βˆ’ 2π‘₯) ) ∫1▒𝑑π‘₯/(√(5π‘₯^2 βˆ’ 2π‘₯) ) = ∫1▒𝑑π‘₯/(√(5(π‘₯^2 βˆ’ 2/5 π‘₯) ) ) = ∫1▒𝑑π‘₯/(√(5(π‘₯^2 βˆ’ 2(π‘₯)(1/5)) ) ) = ∫1▒𝑑π‘₯/(√(5(π‘₯^2 βˆ’ 2(π‘₯)(1/5) + (1/5)^2βˆ’ (1/5)^2 ) ) ) = ∫1▒𝑑π‘₯/(√(5[(π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 ] ) ) = ∫1▒𝑑π‘₯/(√5 √((π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 )) (Taking 5 common) [Adding and subtracting (1/5)^2] = ∫1▒𝑑π‘₯/(√(5[(π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 ] ) ) = ∫1▒𝑑π‘₯/(√5 √((π‘₯ βˆ’ 1/5)^2βˆ’(1/5)^2 )) =1/√5 π‘™π‘œπ‘”|π‘₯βˆ’1/5+√((π‘₯βˆ’1/5)^2βˆ’(1/5)^2 )|+𝐢 =1/√5 π‘™π‘œπ‘”|π‘₯βˆ’1/5+√(π‘₯^2+(1/5)^2βˆ’2(π‘₯)(1/5)βˆ’(1/5)^2 )|+𝐢 =𝟏/βˆšπŸ“ π’π’π’ˆ|π’™βˆ’πŸ/πŸ“+√(𝒙^πŸβˆ’πŸπ’™/πŸ“)|+π‘ͺ It is of form ∫1▒〖𝑑π‘₯/(√(π‘₯^2 βˆ’ π‘Ž^2 ) )=π‘™π‘œπ‘”|π‘₯+√(π‘₯^2βˆ’π‘Ž^2 )|+𝐢1γ€— Replacing π‘₯ by (π‘₯βˆ’1/5)π‘Žπ‘›π‘‘ π‘Ž 𝑏𝑦 1/5, (Using√(π‘Ž.𝑏)=βˆšπ‘Ž βˆšπ‘)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.