Ex 7.3, 24 - Integration ex (1 + x) / cos2 (ex x) dx equals - Integration using trigo identities - sin^2,cos^2 etc formulae

Slide57.JPG

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise
Ask Download

Transcript

Ex 7.3, 24 ∫1β–’(𝑒^π‘₯ (1 + π‘₯))/(cos^2⁑(𝑒^π‘₯ π‘₯) ) 𝑑π‘₯ equals A. βˆ’cot⁑(𝑒π‘₯^π‘₯ ) + 𝐢 B. tan⁑(π‘₯𝑒^π‘₯ ) + 𝐢 C. tan⁑(𝑒π‘₯) + 𝐢 D. cot⁑(𝑒π‘₯) + 𝐢 ∫1β–’(𝑒^π‘₯ (1 + π‘₯))/cos^2⁑(π‘₯𝑒^π‘₯ ) 𝑑π‘₯ Put γ€–π‘₯𝑒〗^π‘₯=𝑑 Differentiating w.r.t.x 𝑑(π‘₯)/𝑑π‘₯ . 𝑒^π‘₯+𝑑(𝑒^π‘₯ )/𝑑π‘₯ . π‘₯=𝑑𝑑/𝑑π‘₯ 𝑒^π‘₯+(𝑒^π‘₯ ). π‘₯=𝑑𝑑/𝑑π‘₯ 𝑒^π‘₯ (1+π‘₯)=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=𝑑𝑑/(𝑒^π‘₯ (1 + π‘₯) ) Thus, our equation becomes ∫1β–’(𝑒^π‘₯ (1 + π‘₯))/cos^2⁑(π‘₯𝑒^π‘₯ ) 𝑑π‘₯ = ∫1β–’(𝑒^π‘₯ (1 + π‘₯))/cos^2⁑(𝑑) Γ— 𝑑𝑑/(𝑒^π‘₯ (1 + π‘₯) ) =∫1▒𝑑𝑑/cos^2⁑𝑑 . 𝑑𝑑 =∫1β–’sec^2⁑𝑑 . 𝑑𝑑 =tan⁑𝑑+𝐢 Putting value of 𝑑=π‘₯𝑒^π‘₯ =tan⁑(π‘₯𝑒^π‘₯ )+𝐢 Hence B is correct answer

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .
Jail