Integration Full Chapter Explained - Integration Class 12 - Everything you need

Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.3, 24 β«1β(π^π₯ (1 + π₯))/(cos^2β‘(π^π₯ π₯) ) ππ₯ equals (A) βcotβ‘(ππ₯^π₯ ) + πΆ (B) tanβ‘(π₯π^π₯ ) + πΆ (C) tanβ‘(π^π₯) + πΆ (D) cotβ‘(π^π₯) + πΆ β«1β(π^π₯ (1 + π₯))/cos^2β‘(π₯π^π₯ ) ππ₯ Put γπ₯πγ^π₯=π‘ Differentiating w.r.t.x π(π₯)/ππ₯ . π^π₯+π(π^π₯ )/ππ₯ . π₯=ππ‘/ππ₯ π^π₯+(π^π₯ ). π₯=ππ‘/ππ₯ Using product rule as (π’π£)^β²=π’^β² π£+ π£^β² π’ π^π₯ (1+π₯)=ππ‘/ππ₯ ππ₯=ππ‘/(π^π₯ (1 + π₯) ) Thus, our equation becomes β«1β(π^π₯ (1 + π₯))/cos^2β‘(π₯π^π₯ ) ππ₯ = β«1β(π^π₯ (1 + π₯))/cos^2β‘(π‘) Γ ππ‘/(π^π₯ (1 + π₯) ) =β«1βππ‘/cos^2β‘π‘ . ππ‘ =β«1βsec^2β‘π‘ . ππ‘ =tanβ‘π‘+πΆ Putting value of π‘=π₯π^π₯ =tanβ‘(π₯π^π₯ )+πΆ β΄ B is correct answer ( As β«1βsec^2β‘π₯ ππ₯=tanβ‘π₯+πΆ)
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23
Ex 7.3, 24 Important You are here
About the Author