Ex 7.3, 24 (MCQ) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important You are here
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 24 β«1β(π^π₯ (1 + π₯))/(cos^2β‘(π^π₯ π₯) ) ππ₯ equals (A) βcotβ‘(ππ₯^π₯ ) + πΆ (B) tanβ‘(π₯π^π₯ ) + πΆ (C) tanβ‘(π^π₯) + πΆ (D) cotβ‘(π^π₯) + πΆ β«1β(π^π₯ (1 + π₯))/cos^2β‘(π₯π^π₯ ) ππ₯ Put γπ₯πγ^π₯=π‘ Differentiating w.r.t.x π(π₯)/ππ₯ . π^π₯+π(π^π₯ )/ππ₯ . π₯=ππ‘/ππ₯ π^π₯+(π^π₯ ). π₯=ππ‘/ππ₯ Using product rule as (π’π£)^β²=π’^β² π£+ π£^β² π’ π^π₯ (1+π₯)=ππ‘/ππ₯ ππ₯=ππ‘/(π^π₯ (1 + π₯) ) Thus, our equation becomes β«1β(π^π₯ (1 + π₯))/cos^2β‘(π₯π^π₯ ) ππ₯ = β«1β(π^π₯ (1 + π₯))/cos^2β‘(π‘) Γ ππ‘/(π^π₯ (1 + π₯) ) =β«1βππ‘/cos^2β‘π‘ . ππ‘ =β«1βsec^2β‘π‘ . ππ‘ =tanβ‘π‘+πΆ Putting value of π‘=π₯π^π₯ =tanβ‘(π₯π^π₯ )+πΆ β΄ B is correct answer ( As β«1βsec^2β‘π₯ ππ₯=tanβ‘π₯+πΆ)