

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important You are here
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.3, 9 Integrate (𝑐𝑜𝑠 𝑥)/(1 + 𝑐𝑜𝑠 𝑥) ∫1▒〖(𝑐𝑜𝑠 𝑥)/(1 + 𝑐𝑜𝑠 𝑥) " " 𝑑𝑥〗 = ∫1▒((cos𝑥 + 1 − 1)/(1 + cos𝑥 )) 𝑑𝑥 =∫1▒((1 + cos𝑥 − 1)/(1 + cos𝑥 )) 𝑑𝑥 =∫1▒((1 + cos𝑥)/(1 + cos𝑥 ) − 1/(1 + cos𝑥 )) 𝑑𝑥 =∫1▒〖1−1/(1 + cos𝑥 )〗 𝑑𝑥 =∫1▒1 𝑑𝑥−∫1▒𝟏/(𝟏 + 𝒄𝒐𝒔𝒙 ) 𝑑𝑥 =∫1▒1 𝑑𝑥−∫1▒1/(𝟐 〖𝒄𝒐𝒔〗^𝟐〖𝒙/𝟐〗 ) 𝑑𝑥 =∫1▒1 𝑑𝑥−∫1▒1/2 sec^2〖𝑥/2〗 𝑑𝑥 =∫1▒1 𝑑𝑥−1/2 ∫1▒sec^2〖𝑥/2〗 𝑑𝑥 =𝑥− 1/2 〖tan 〗〖𝑥/2〗/(1/2) +𝐶 =𝑥− 2/2 〖tan 〗〖𝑥/2〗 +𝐶 =𝒙− 〖𝐭𝐚𝐧 〗〖𝒙/𝟐〗 +𝑪 ∫1▒sec^2(𝑎𝑥+𝑏) 𝑑𝑥=𝑡𝑎𝑛(𝑎𝑥 + 𝑏)/𝑎 +𝐶 We know that cos 2𝜃=2 cos^2〖𝜃−1〗 cos2𝜃+1=2 cos^2𝜃 Replacing 𝜃 by 𝑥/2 cos2(𝑥/2)+1=2 cos^2〖𝑥/2〗 cos𝑥+1=2 cos^2〖𝑥/2〗