
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important You are here
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Ex 7.3, 9 Integrate (πππ π₯)/(1 + πππ π₯) β«1βγ(πππ π₯)/(1 + πππ π₯) " " ππ₯γ = β«1β((cosβ‘π₯ + 1 β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯ β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯)/(1 + cosβ‘π₯ ) β 1/(1 + cosβ‘π₯ )) ππ₯ =β«1βγ1β1/(1 + cosβ‘π₯ )γ ππ₯ =β«1β1 ππ₯ββ«1βπ/(π + πππβ‘π ) ππ₯ =β«1β1 ππ₯ββ«1β1/(π γπππγ^πβ‘γπ/πγ ) ππ₯ =β«1β1 ππ₯ββ«1β1/2 sec^2β‘γπ₯/2γ ππ₯ =β«1β1 ππ₯β1/2 β«1βsec^2β‘γπ₯/2γ ππ₯ =π₯β 1/2 γtan γβ‘γπ₯/2γ/(1/2) +πΆ =π₯β 2/2 γtan γβ‘γπ₯/2γ +πΆ =πβ γπππ§ γβ‘γπ/πγ +πͺ β«1βsec^2β‘(ππ₯+π) ππ₯=π‘ππβ‘(ππ₯ + π)/π +πΆ We know that cos 2π=2 cos^2β‘γπβ1γ cosβ‘2π+1=2 cos^2β‘π Replacing π by π₯/2 cosβ‘2(π₯/2)+1=2 cos^2β‘γπ₯/2γ cosβ‘π₯+1=2 cos^2β‘γπ₯/2γ