Ex 7.3, 9 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important You are here
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 9 Integrate (πππ π₯)/(1 + πππ π₯) β«1βγ(πππ π₯)/(1 + πππ π₯) " " ππ₯γ = β«1β((cosβ‘π₯ + 1 β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯ β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯)/(1 + cosβ‘π₯ ) β 1/(1 + cosβ‘π₯ )) ππ₯ =β«1βγ1β1/(1 + cosβ‘π₯ )γ ππ₯ =β«1β1 ππ₯ββ«1βπ/(π + πππβ‘π ) ππ₯ =β«1β1 ππ₯ββ«1β1/(π γπππγ^πβ‘γπ/πγ ) ππ₯ =β«1β1 ππ₯ββ«1β1/2 sec^2β‘γπ₯/2γ ππ₯ =β«1β1 ππ₯β1/2 β«1βsec^2β‘γπ₯/2γ ππ₯ =π₯β 1/2 γtan γβ‘γπ₯/2γ/(1/2) +πΆ =π₯β 2/2 γtan γβ‘γπ₯/2γ +πΆ =πβ γπππ§ γβ‘γπ/πγ +πͺ β«1βsec^2β‘(ππ₯+π) ππ₯=π‘ππβ‘(ππ₯ + π)/π +πΆ We know that cos 2π=2 cos^2β‘γπβ1γ cosβ‘2π+1=2 cos^2β‘π Replacing π by π₯/2 cosβ‘2(π₯/2)+1=2 cos^2β‘γπ₯/2γ cosβ‘π₯+1=2 cos^2β‘γπ₯/2γ