Integration Full Chapter Explained - Integration Class 12 - Everything you need

Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.3, 9 Integrate (πππ π₯)/(1 + πππ π₯) β«1βγ(πππ π₯)/(1 + πππ π₯) " " ππ₯γ = β«1β((cosβ‘π₯ + 1 β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯ β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯)/(1 + cosβ‘π₯ ) β 1/(1 + cosβ‘π₯ )) ππ₯ =β«1βγ1β1/(1 + cosβ‘π₯ )γ ππ₯ =β«1β1 ππ₯ββ«1βπ/(π + πππβ‘π ) ππ₯ =β«1β1 ππ₯ββ«1β1/(π γπππγ^πβ‘γπ/πγ ) ππ₯ =β«1β1 ππ₯ββ«1β1/2 sec^2β‘γπ₯/2γ ππ₯ =β«1β1 ππ₯β1/2 β«1βsec^2β‘γπ₯/2γ ππ₯ =π₯β 1/2 γtan γβ‘γπ₯/2γ/(1/2) +πΆ =π₯β 2/2 γtan γβ‘γπ₯/2γ +πΆ =πβ γπππ§ γβ‘γπ/πγ +πͺ β«1βsec^2β‘(ππ₯+π) ππ₯=π‘ππβ‘(ππ₯ + π)/π +πΆ We know that cos 2π=2 cos^2β‘γπβ1γ cosβ‘2π+1=2 cos^2β‘π Replacing π by π₯/2 cosβ‘2(π₯/2)+1=2 cos^2β‘γπ₯/2γ cosβ‘π₯+1=2 cos^2β‘γπ₯/2γ
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important You are here
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23
Ex 7.3, 24 Important
About the Author