Ex 7.3, 10 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important You are here
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 10 Integrate the function π ππ4 π₯ β«1βsin^4β‘π₯ ππ₯ =β«1β(sin^2β‘π₯ )^2 ππ₯ =β«1β((1 β cosβ‘2π₯)/2)^2 ππ₯ =1/4 β«1β(1βcosβ‘2π₯ )^2 ππ₯ We know that πππ β‘2π=1β2 γπ ππγ^2β‘π 2 γπ ππγ^2β‘π=1βπππ β‘2π γπ ππγ^2β‘π=(1 β πππ β‘2π)/2 Replace π by π₯ γπ ππγ^2β‘π₯=(1 β πππ β‘2π₯)/2 =1/4 β«1β(1^2+(cosβ‘2π₯ )^2β2(1)(cosβ‘2π₯ )) ππ₯ =1/4 β«1β(1+cos^2β‘2π₯β2 cosβ‘2π₯ ) ππ₯ =1/4 β«1β(1+(1 + cosβ‘4π₯)/2β2 cosβ‘2π₯ ) ππ₯ =1/4 β«1β1 ππ₯+1/8 β«1β(1+cosβ‘4π₯ ) ππ₯β2/4 β«1βcosβ‘2π₯ ππ₯ =1/4 β«1β1 ππ₯+1/8 β«1β1 ππ₯+1/8 β«1βcosβ‘4π₯ ππ₯β1/2 β«1βcosβ‘2π₯ ππ₯ We know that cosβ‘2π=2 cos^2β‘γπβ1γ cosβ‘γ2π+1γ=2 cos^2β‘π Replace π by 2π₯ cosβ‘γ4π₯+1γ=2 cos^2β‘2π₯ cosβ‘γ4π₯ + 1γ/2=cos^2β‘2π₯ β«1βcosβ‘(ππ₯+π) ππ₯=π ππβ‘(ππ₯ + π)/π =π₯/4 + π₯/8 + 1/8 sinβ‘4π₯/4 β 1/2 sinβ‘2π₯/2 +πΆ =(2π₯ + π₯)/8 + 1/32 sinβ‘4π₯β 1/4 sinβ‘2π₯+πΆ =ππ/πβ π/π πππβ‘ππ++ π/ππ πππβ‘ππ+πͺ