

Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14 You are here
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at Dec. 20, 2019 by Teachoo
Ex 7.3, 14 Integrate the function cosβ‘γπ₯ β sinβ‘π₯ γ/(1 + sinβ‘2π₯ ) β«1βcosβ‘γπ₯ β sinβ‘π₯ γ/(1 + sinβ‘2π₯ ) ππ₯ =β«1βcosβ‘γπ₯ βγ sinγβ‘π₯ γ/(π + 2 sinβ‘π₯ cosβ‘π₯ ) ππ₯ =β«1βcosβ‘γπ₯ βγ sinγβ‘π₯ γ/(γπ¬π’π§γ^πβ‘π + γππ¨π¬γ^πβ‘π + 2 sinβ‘cosβ‘π₯ ) ππ₯ =β«1βcosβ‘γπ₯ βγ sinγβ‘π₯ γ/(sinβ‘π₯ + cosβ‘π₯ )^2 ππ₯ Let sinβ‘π₯+cosβ‘π₯=π‘ Differentiating w.r.t.x (π ππβ‘2 π=2 π ππβ‘π πππ β‘π) (As γπ ππγ^2β‘π+γπππ γ^2β‘π=1) π(sinβ‘π₯ + cosβ‘π₯ )/ππ₯=ππ‘/ππ₯ cos π₯βsinβ‘π₯=ππ‘/ππ₯ ππ₯=ππ‘/(cos π₯ β sinβ‘π₯ ) Thus, our equation becomes β«1β((cosβ‘γπ₯ β sinβ‘π₯ γ ))/(sinβ‘π₯ + cosβ‘π₯ )^2 ππ₯ =β«1β((cosβ‘γπ₯ β sinβ‘π₯ γ ))/π‘^2 Γππ‘/cosβ‘γπ₯ β sinβ‘π₯ γ =β«1βππ‘/π‘^2 =β«1βπ‘^(β2) ππ‘ =π‘^(β2 +1)/(β2 + 1) +πΆ =π‘^(β1)/(β1) +πΆ =(β1)/π‘ +πΆ Putting value of π‘=π ππβ‘π₯+πππ π₯ =(βπ)/(π¬π’π§β‘π + πππβ‘π ) +πͺ