Ex 7.3, 20 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important You are here
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 20 Integrate the function cosβ‘2π₯/(cosβ‘γπ₯ γ+ sinβ‘π₯ )^2 β«1βcosβ‘2π₯/(cosβ‘π₯ + sinβ‘π₯ )^2 =β«1β(cos^2β‘π₯ β sin^2β‘π₯)/(cosβ‘π₯ + sinβ‘π₯ )^2 ππ₯ =β«1β(cosβ‘π₯ β sinβ‘π₯ )(cosβ‘π₯ + sinβ‘π₯ )/(cosβ‘π₯ + sinβ‘π₯ )^2 ππ₯ =β«1β(cosβ‘π₯ β sinβ‘π₯)/(cosβ‘π₯ + sinβ‘π₯ ) ππ₯ Let cosβ‘π₯+sinβ‘π₯=π‘ Differentiating w.r.t. x (πππ β‘2π=γπππ γ^2β‘πβγπ ππγ^2β‘π) βsinβ‘π₯+cosβ‘π₯=ππ‘/ππ₯ (cosβ‘π₯βsinβ‘π₯ )ππ₯=ππ‘ ππ₯=1/((cosβ‘π₯ β sinβ‘π₯ ) ) ππ‘ Thus, our equation becomes =β«1β((cosβ‘π₯ β sinβ‘π₯ ))/π‘ Γππ‘/(cosβ‘π₯ β sinβ‘π₯ ) =β«1β1/π‘ ππ‘ =logβ‘|π‘|+πΆ Putting value of π‘=πππ β‘π₯+π ππβ‘π₯ =πππβ‘|πππβ‘π+πππβ‘π |+πͺ