
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important You are here
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.3, 20 Integrate the function cos2𝑥/(cos〖𝑥 〗+ sin𝑥 )^2 ∫1▒cos2𝑥/(cos𝑥 + sin𝑥 )^2 =∫1▒(cos^2𝑥 − sin^2𝑥)/(cos𝑥 + sin𝑥 )^2 𝑑𝑥 =∫1▒(cos𝑥 − sin𝑥 )(cos𝑥 + sin𝑥 )/(cos𝑥 + sin𝑥 )^2 𝑑𝑥 =∫1▒(cos𝑥 − sin𝑥)/(cos𝑥 + sin𝑥 ) 𝑑𝑥 Let cos𝑥+sin𝑥=𝑡 Differentiating w.r.t. x (𝑐𝑜𝑠2𝜃=〖𝑐𝑜𝑠〗^2𝜃−〖𝑠𝑖𝑛〗^2𝜃) −sin𝑥+cos𝑥=𝑑𝑡/𝑑𝑥 (cos𝑥−sin𝑥 )𝑑𝑥=𝑑𝑡 𝑑𝑥=1/((cos𝑥 − sin𝑥 ) ) 𝑑𝑡 Thus, our equation becomes =∫1▒((cos𝑥 − sin𝑥 ))/𝑡 ×𝑑𝑡/(cos𝑥 − sin𝑥 ) =∫1▒1/𝑡 𝑑𝑡 =log|𝑡|+𝐶 Putting value of 𝑡=𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥 =𝒍𝒐𝒈|𝒄𝒐𝒔𝒙+𝒔𝒊𝒏𝒙 |+𝑪