Ex 7.3, 20 - Integrate cos 2x / (cos x + sin x)^2 - NCERT Maths

Ex 7.3, 20 - Chapter 7 Class 12 Integrals - Part 2


Transcript

Ex 7.3, 20 Integrate the function cos⁑2π‘₯/(cos⁑〖π‘₯ γ€—+ sin⁑π‘₯ )^2 ∫1β–’cos⁑2π‘₯/(cos⁑π‘₯ + sin⁑π‘₯ )^2 =∫1β–’(cos^2⁑π‘₯ βˆ’ sin^2⁑π‘₯)/(cos⁑π‘₯ + sin⁑π‘₯ )^2 𝑑π‘₯ =∫1β–’(cos⁑π‘₯ βˆ’ sin⁑π‘₯ )(cos⁑π‘₯ + sin⁑π‘₯ )/(cos⁑π‘₯ + sin⁑π‘₯ )^2 𝑑π‘₯ =∫1β–’(cos⁑π‘₯ βˆ’ sin⁑π‘₯)/(cos⁑π‘₯ + sin⁑π‘₯ ) 𝑑π‘₯ Let cos⁑π‘₯+sin⁑π‘₯=𝑑 Differentiating w.r.t. x (π‘π‘œπ‘ β‘2πœƒ=γ€–π‘π‘œπ‘ γ€—^2β‘πœƒβˆ’γ€–π‘ π‘–π‘›γ€—^2β‘πœƒ) βˆ’sin⁑π‘₯+cos⁑π‘₯=𝑑𝑑/𝑑π‘₯ (cos⁑π‘₯βˆ’sin⁑π‘₯ )𝑑π‘₯=𝑑𝑑 𝑑π‘₯=1/((cos⁑π‘₯ βˆ’ sin⁑π‘₯ ) ) 𝑑𝑑 Thus, our equation becomes =∫1β–’((cos⁑π‘₯ βˆ’ sin⁑π‘₯ ))/𝑑 ×𝑑𝑑/(cos⁑π‘₯ βˆ’ sin⁑π‘₯ ) =∫1β–’1/𝑑 𝑑𝑑 =log⁑|𝑑|+𝐢 Putting value of 𝑑=π‘π‘œπ‘ β‘π‘₯+𝑠𝑖𝑛⁑π‘₯ =π’π’π’ˆβ‘|𝒄𝒐𝒔⁑𝒙+π’”π’Šπ’β‘π’™ |+π‘ͺ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.