

Ex 7.2
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Ex 7.2, 28 cos𝑥 1+ sin𝑥 Step 1: Let 1+ sin𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0+cos 𝑥= 𝑑𝑡𝑑𝑥 cos𝑥= 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡 cos𝑥 Step 2: Integrating the function cos𝑥 1 + sin𝑥 . 𝑑𝑥 putting 1+ 𝑠𝑖𝑛𝑥=𝑡 & 𝑑𝑥= 𝑑𝑡 cos𝑥 = cos𝑥 𝑡. 𝑑𝑡 cos𝑥 = 𝑑𝑡 𝑡 = 1 𝑡 12 . 𝑑𝑡 = 𝑡− 12 . 𝑑𝑡 = 𝑡− 12 + 1− 12 + 1 +𝐶 = 2. 𝑡 12 +𝐶 = 2 𝑡 +𝐶 = 𝟐 𝟏+ 𝐬𝐢𝐧𝒙+𝑪