Ex 7.2, 32 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.2, 32 Integrate 1/(1 + cot𝑥 ) Simplify the given function ∫1▒1/(1 + cot𝑥 ) 𝑑𝑥 = ∫1▒1/(1 + cos𝑥/sin𝑥 ) 𝑑𝑥 = ∫1▒1/(〖sin𝑥 + cos〗𝑥/sin𝑥 ) 𝑑𝑥 = ∫1▒sin𝑥/〖sin𝑥 + cos〗𝑥 𝑑𝑥 Multiplying & dividing by 2 = ∫1▒(2 sin𝑥)/2(〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥 Adding & subtracting 𝑐𝑜𝑠𝑥 in numerator = ∫1▒(sin𝑥 + sin𝑥 + cos𝑥 − cos𝑥)/2(〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥 = 1/2 ∫1▒((sin𝑥 + cos𝑥 + sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥 = 1/2 ∫1▒((sin𝑥 + cos𝑥)/〖sin𝑥 + cos〗𝑥 +(sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥 = 1/2 ∫1▒(1+(sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥 = 1/2 [𝑥+∫1▒((sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥] + 𝐶1 …(1) Solving 𝐈1 I1 = ∫1▒(sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 𝑑𝑥 Let 〖sin𝑥 + cos〗𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 〖cos𝑥−sin〗𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/〖cos𝑥 − sin〗𝑥 𝑑𝑥=𝑑𝑡/(−(〖sin𝑥 − cos〗𝑥 ) ) Thus, our equation becomes …(2) I1 = ∫1▒(sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 𝑑𝑥 = ∫1▒(sin𝑥 − cos𝑥)/𝑡 . 𝑑𝑡/(−(〖sin𝑥 − cos〗𝑥 ) ) = −1∫1▒𝑑𝑡/𝑡 = −〖log 〗|𝑡|+𝐶 Putting back 𝑡=𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥 = −log〖 |sin𝑥+cos𝑥 |〗+𝐶2 Putting the value of I1 in (1) ∴ ∫1▒〖1/(1 + cot𝑥 ) " " 〗 = 1/2 [𝑥+∫1▒((sin𝑥 − cos𝑥)/〖sin𝑥 + cos〗𝑥 ) 𝑑𝑥] + 𝐶1 = 1/2 [𝑥−log|sin𝑥+cos𝑥 |+𝐶2" " ] +𝐶1 = 𝑥/2−1/2 log〖 |sin𝑥+cos𝑥 |〗+𝐶1+𝐶2/2 = 𝒙/𝟐 −𝟏/𝟐 𝒍𝒐𝒈〖 |𝒔𝒊𝒏𝒙+𝒄𝒐𝒔𝒙 |〗+𝑪
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important You are here
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo