Ex 7.2, 21 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.2, 21 tan2 (2𝑥 – 3) Let I = tan2 (2𝑥 – 3) . 𝑑𝑥 = sec2 2𝑥 – 3−1 𝑑𝑥 = sec2 2𝑥 – 3 𝑑𝑥− 1.𝑑𝑥 = sec2 2𝑥 – 3 𝑑𝑥 − 𝑥+𝐶1 Solving 𝐈1 I1 = sec2 2𝑥 – 3 𝑑𝑥 Let 2𝑥 – 3=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 2−0 = 𝑑𝑡𝑑𝑥 2= 𝑑𝑡𝑑𝑥 𝑑𝑥 = 𝑑𝑡2 Thus, our equation becomes ∴ sec2 2𝑥 – 3 𝑑𝑥 = sec2 𝑡 . 𝑑𝑡2 = 12 sec2 𝑡 .𝑑𝑡 = 12 tan𝑡+𝐶2 = 12 tan 2𝑥−3+ 𝐶2 Now, I = sec2 2𝑥 – 3 𝑑𝑥−𝑥+𝐶1 = I1 − 𝑥+𝐶1 = 12 tan 2𝑥−3+ 𝐶2 −𝑥+𝐶1 = 𝟏𝟐 𝒕𝒂𝒏 𝟐𝒙−𝟑 −𝒙+𝑪
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21 You are here
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo