Check sibling questions


Transcript

Ex 7.2, 11 (Method 1) Integrate the function: 𝑥/√(𝑥 + 4) , 𝑥>0 Step 1: Simplify the given function 𝑥/√(𝑥 + 4) = (𝑥 + 4 − 4)/√(𝑥 + 4) = (𝑥 + 4)/√(𝑥 + 4) − 4/√(𝑥 + 4) = (𝑥 + 4)^(1/2 − 1) − 4(𝑥 + 4)^(1/2) = (𝑥 + 4)^(1/2) − 4(𝑥 + 4)^(− 1/2) (Adding and Subtracting 4) Step 2: Integrating the function ∫1▒〖" " 𝑥/√(𝑥 + 4)〗 . 𝑑𝑥 = ∫1▒((𝑥 + 4)^(1/2) " − " 〖4 (𝑥 + 4)〗^(− 1/2) ) . 𝑑𝑥 = ∫1▒(𝑥 + 4)^(1/2) . 𝑑𝑥 − 4∫1▒(𝑥 + 4)^(− 1/2) . 𝑑𝑥 = (𝑥 + 4)^(1/2 + 1)/(1/2 + 1) − (4 (𝑥 + 4)^(− 1/2 + 1))/(− 1/2 + 1) + C = (𝑥 + 4)^(3/2)/(3/2 ) − (4 (𝑥 + 4)^(1/2))/( 1/2) + C = 2/3 (𝑥+4)^(3/2) − 4.2 (𝑥+4)^(1/2) + C = 〖2(𝑥+4)〗^(1/2) ((𝑥 + 4)/3 −4) + 𝐶 = 〖2(𝑥+4)〗^(1/2) ((𝑥 + 4 −12)/3) + 𝐶 = 〖2(𝑥+4)〗^(1/2) ((𝑥 − 8))/3 + 𝐶 = 𝟐/𝟑 √(𝒙 + 𝟒) (𝒙−𝟖) + 𝑪 (Taking 〖2(𝑥+4)〗^(1/2) as common) Ex 7.2, 11 (Method 2) Integrate the function: 𝑥/√(𝑥 + 4) , 𝑥>0 Step 1: Let 𝑥+4=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 1+0= 𝑑𝑡/𝑑𝑥 1= 𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡 Step 2: Integrating the function ∫1▒〖" " 𝑥/√(𝑥 + 4)〗 . 𝑑𝑥 Putting 𝑡=𝑥+4 & 𝑑𝑥=𝑑𝑡 = ∫1▒𝑥/√𝑡 . 𝑑𝑡 = ∫1▒(𝑡 − 4)/√𝑡 . 𝑑𝑡 = ∫1▒(𝑡 − 4)/√𝑡 . 𝑑𝑡 = ∫1▒(𝑡/√𝑡 −4/√𝑡) 𝑑𝑡 = ∫1▒𝑡/√𝑡 . 𝑑𝑡 − ∫1▒4/√𝑡 . 𝑑𝑡 = ∫1▒𝑡^(1 − 1/2) . 𝑑𝑡 − ∫1▒〖4 . 𝑡^(− 1/2) 〗. 𝑑𝑡 = ∫1▒𝑡^(1/2) . 𝑑𝑡 − ∫1▒〖4 . 𝑡^(− 1/2) 〗. 𝑑𝑡 (As 𝑥 + 4=𝑡 ⇒𝑥=𝑡−4) = 𝑡^(1/2 + 1)/(1/2 + 1) − 4 𝑡^(− 1/2 + 1)/(− 1/2 + 1) +𝐶 = (𝑡^(3/2) )/(3/2) − 4 𝑡^(1/2)/(1/2) +𝐶 = 2/3 𝑡^(3/2) − 4 . 2𝑡^(1/2) +𝐶 Taking 2/3 . 𝑡^(1/2) as common , we get = 2/3 . 𝑡^(1/2) (𝑡−4 . 3)+𝐶 = 2/3 . 𝑡^(1/2) (𝑡−12)+𝐶 Putting the value of 𝑡=𝑥+4 = 2/3 . (𝑥+4)^(1/2) (𝑥+4−12)+𝐶 = 𝟐/𝟑 √(𝒙+𝟒) (𝒙−𝟖)+𝑪

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo