Last updated at Dec. 16, 2024 by Teachoo
Ex 7.2, 1 Integrate the function: 2𝑥/(1 + 𝑥2) We need to find ∫1▒𝟐𝒙/(𝟏 + 𝒙𝟐) 𝒅𝒙 Let 𝟏 + 𝒙𝟐 = 𝒕 Differentiating 𝑤.𝑟.𝑡.𝑥 2𝑥=𝑑𝑡/𝑑𝑥 𝒅𝒙=𝒅𝒕/𝟐𝒙 Thus, our equation becomes ∫1▒𝟐𝒙/(𝟏 + 𝒙𝟐) 𝒅𝒙 =∫1▒2𝑥/𝑡 . 𝑑𝑡/2𝑥 =∫1▒𝑑𝑡/𝑡 = log |𝒕|+𝑪 Putting t = 1 + x2 = log |1+𝑥^2 |+𝐶 = log (𝟏+𝒙^𝟐 )+𝑪 (∫1▒〖1/𝑥 𝑑𝑥〗=log|𝑥|+𝐶) (Since 1+𝑥^2 is always positive)
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo