Misc 27 - Chapter 7 Class 12 Integration - Evaluate definite - Miscellaneous

part 2 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 6 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 8 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 9 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 10 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 11 - Misc 27 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Misc 27 Evaluate the definite integral ∫_(πœ‹/6)^(πœ‹/3)β–’γ€–(sin⁑π‘₯ + cos⁑π‘₯)/√(sin⁑〖2π‘₯ γ€— ) γ€— ∫_(πœ‹/6)^(πœ‹/3)β–’γ€–(sin⁑π‘₯ + cos⁑π‘₯)/√(sin⁑〖2π‘₯ γ€— ) 𝑑π‘₯ γ€— = ∫_(πœ‹/6)^(πœ‹/3)β–’γ€– (sin⁑π‘₯ + cos⁑π‘₯)/√(2 sin⁑π‘₯ cos⁑π‘₯ ) 𝑑π‘₯ γ€— = ∫_(πœ‹/6)^(πœ‹/3)β–’γ€– (sin⁑π‘₯/√(2 sin⁑π‘₯ cos⁑π‘₯ )+cos⁑π‘₯/√(2 sin⁑π‘₯ cos⁑π‘₯ )) 𝑑π‘₯ γ€— = ∫_(πœ‹/6)^(πœ‹/3)β–’γ€– (√(sin⁑π‘₯ )/(√2 √(cos⁑π‘₯ ))+√(cos⁑π‘₯ )/(√2 √(sin⁑π‘₯ ))) 𝑑π‘₯ γ€— = ∫_(πœ‹/6)^(πœ‹/3)β–’γ€– (1/√2 √(sin⁑π‘₯/cos⁑π‘₯ ) + 1/√2 √(cos⁑π‘₯/sin⁑π‘₯ )) 𝑑π‘₯ γ€— = 1/√2 ∫_(πœ‹/6)^(πœ‹/3)β–’γ€–(√(tan⁑π‘₯ )+√(cot⁑π‘₯ ) ) 𝑑π‘₯ γ€— = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– [√(cot⁑π‘₯ )+1/√(cot⁑π‘₯ )] γ€— 𝑑π‘₯ = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’(cot⁑π‘₯ + 1)/√(cot⁑π‘₯ ) 𝑑π‘₯ = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€–βˆš(tan⁑π‘₯ ) (cot⁑π‘₯+1) γ€— 𝑑π‘₯ Let tan⁑π‘₯=𝑑^2 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. sec^2 π‘₯=2𝑑 𝑑𝑑/𝑑π‘₯ 1+tan^2 π‘₯=2𝑑 . 𝑑𝑑/𝑑π‘₯ 1+(𝑑^2 )^2=2𝑑 . 𝑑𝑑/𝑑π‘₯ 1+𝑑^4=2𝑑 . 𝑑𝑑/𝑑π‘₯ (1+𝑑^4 ) 𝑑π‘₯=2𝑑 𝑑𝑑 𝑑π‘₯=2𝑑/(1 + 𝑑^4 ) 𝑑𝑑 Putting values of t & dt, we get Putting values of t & dt, we get 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€–βˆš(tan⁑π‘₯ ) (cot⁑π‘₯+1) γ€— 𝑑π‘₯ =1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’[√(𝑑^2 ) (cot⁑π‘₯+1)] 𝑑π‘₯ = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’[√(𝑑^2 ) (1/tan⁑π‘₯ +1)] 𝑑π‘₯ = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)▒𝑑[1/𝑑^2 +1] 𝑑π‘₯ = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)▒𝑑[(1 + 𝑑^2)/𝑑^2 ] 𝑑π‘₯ = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)▒𝑑[(1 + 𝑑^2)/𝑑^2 ] Γ—2𝑑/(1 + 𝑑^2 ) . 𝑑𝑑 = 1/√2 ∫1_(πœ‹/6)^(πœ‹/3)β–’2[(1 + 𝑑^2)/(1 + 𝑑^4 )] 𝑑𝑑 = 1/√2 2∫1_(πœ‹/6)^(πœ‹/3)β–’(1 + 𝑑^2)/(1 + 𝑑^4 ) 𝑑𝑑 Dividing numerator and denominator by 𝑑^2 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– ((1 + 𝑑^2)/𝑑^2 )/((1 + 𝑑^4)/𝑑^2 )γ€—. 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– (1/𝑑^2 + 1)/(1/𝑑^2 + 𝑑^2 )γ€—. 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’(1 + 1/𝑑^2 )/( 𝑑^2 + 1/𝑑^2 + 2 βˆ’ 2). 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’(1 + 1/𝑑^2 )/( (𝑑)^2 + (1/𝑑)^2βˆ’ 2 (𝑑) (1/𝑑) + 2). 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– (1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 + 2)γ€—. 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’(1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 +(√2 )^2 ). 𝑑𝑑 Let π‘‘βˆ’1/𝑑=𝑦 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. 1+ 1/𝑑^2 = 𝑑𝑦/𝑑𝑑 𝑑𝑑 =𝑑𝑦/((1 + 1/𝑑^2 ) ) Putting the values of (1/t βˆ’t) and dt, we get √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’(1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 +(√2 )^2 ). 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– (1 + 1/𝑑^2 )/(𝑦^2 +(√2 )^2 )γ€—. 𝑑𝑑 = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– ((1 + 1/𝑑^2 ))/(𝑦^2 +(√2 )^2 )γ€—Γ— 𝑑𝑦/((1 βˆ’ 1/𝑑^2 ) ) = √2 ∫1_(πœ‹/6)^(πœ‹/3)β–’γ€– 1/(𝑦^2 +(√2 )^2 )γ€—. 𝑑𝑦 = √2 (1/√2 tan^(βˆ’1)⁑〖 𝑦/√2γ€— )_(πœ‹/6)^(πœ‹/3) = (tan^(βˆ’1)⁑〖 𝑦/√2γ€— )_(πœ‹/6)^(πœ‹/3) = (tan^(βˆ’1)⁑〖 (1/𝑑 βˆ’ 𝑑)/√2γ€— )_(πœ‹/6)^(πœ‹/3) = (tan^(βˆ’1)⁑〖 (𝑑^2 βˆ’ 1)/(√2 𝑑)γ€— )_(πœ‹/6)^(πœ‹/3) = (tan^(βˆ’1)⁑((tan⁑π‘₯ βˆ’ 1)/(√2 √(tan⁑π‘₯ ))) )_(πœ‹/6)^(πœ‹/3) = tan^(βˆ’1) ((tan⁑(πœ‹/3) βˆ’ 1)/√(2 tan⁑(πœ‹/3) ))βˆ’tan^(βˆ’1) ((tan⁑(πœ‹/6) βˆ’ 1)/√(2 tan⁑(πœ‹/6) )) = tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) )βˆ’tan^(βˆ’1) ((1/√3 βˆ’1 )/(√3 √(2 . 1/(√3 " " )))) = tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) )βˆ’tan^(βˆ’1) ((1 βˆ’ √3 )/(√3 √(2 . 1/(√3 " " )))) = tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) )βˆ’tan^(βˆ’1) ((1 βˆ’ √3 )/√(3 . 2 . 1/(√3 " " ))) = tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) )βˆ’tan^(βˆ’1) ((1 βˆ’ √3 )/√(2 √3) ) = tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) )βˆ’tan^(βˆ’1) ((βˆ’(√3 βˆ’ 1))/√(2 √3) ) = tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) )+tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) ) = 2 tan^(βˆ’1) ((√3 βˆ’ 1)/√(2 √3) ) = 𝟐 〖𝐬𝐒𝒏〗^(βˆ’πŸ) [(βˆšπŸ‘ βˆ’ 𝟏)/𝟐] Note 𝐴𝐡^2=𝐡𝐢^2+𝐴𝐢^2 𝐴𝐡^2=(√3βˆ’1)^2+(√(2 √3) )^2 𝐴𝐡^2=3+1βˆ’2 √3+2 √3 𝐴𝐡^2=4 ∴ 𝐴𝐡=2 sin πœƒ = 𝐡𝐢/𝐴𝐡 sin πœƒ = (√3 βˆ’ 1)/2 πœƒ = 〖𝑠𝑖𝑛〗^(βˆ’1) ((√3 βˆ’ 1)/2)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo