ย  ย  Misc 23 - Integrate root x2+1 [ log (x2 + 1) - 2 log x / x4 - Miscellaneous

part 2 - Misc 23 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Misc 23 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Misc 23 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Misc 23 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Misc 23 Integrate the function (โˆš(๐‘ฅ^2 + 1) [logโกใ€–(๐‘ฅ^2+ 1) โˆ’ 2 logโก๐‘ฅ ใ€— ] )/๐‘ฅ^4 โˆซ1โ–’(โˆš(๐‘ฅ^2 + 1) [logโกใ€–(๐‘ฅ^2+ 1) โˆ’ 2 logโก๐‘ฅ ใ€— ] )/๐‘ฅ^4 ๐‘‘๐‘ฅ Taking ๐‘ฅ^2common from โˆš(๐‘ฅ^2+1) = โˆซ1โ–’(ใ€–ใ€–(๐‘ฅใ€—^2) ใ€—^(1/2) (1 + 1/๐‘ฅ^2 )^(1/2) (logโกใ€–(๐‘ฅ^2+1)ใ€— โˆ’ logโกใ€–๐‘ฅ^2 ใ€— ))/๐‘ฅ^4 ๐‘‘๐‘ฅ = โˆซ1โ–’(๐‘ฅ (1+ 1/๐‘ฅ^2 )^(1/2) (logโกใ€– ((๐‘ฅ^(2 )+ 1))/๐‘ฅ^2 ใ€— ))/๐‘ฅ^4 ๐‘‘๐‘ฅ = โˆซ1โ–’( (1+ 1/๐‘ฅ^2 )^(1/2) (logโก(1 + 1/๐‘ฅ^2 ) ))/๐‘ฅ^3 Let t = 1 + 1/๐‘ฅ^2 ๐‘‘๐‘ก/๐‘‘๐‘ฅ=(โˆ’2)/๐‘ฅ^3 (โˆ’1)/2 ๐‘‘๐‘ก=๐‘‘๐‘ฅ/๐‘ฅ^3 Substituting, = โˆ’1/2 โˆซ1โ–’๐‘ก^(1/2) ใ€– log ๐‘กใ€—โกใ€– ๐‘‘๐‘กใ€— = โˆซ1โ–’( (1+ 1/๐‘ฅ^2 )^(1/2) (logโก(1 + 1/๐‘ฅ^2 ) ))/๐‘ฅ^3 Let t = 1 + 1/๐‘ฅ^2 ๐‘‘๐‘ก/๐‘‘๐‘ฅ=(โˆ’2)/๐‘ฅ^3 (โˆ’1)/2 ๐‘‘๐‘ก=๐‘‘๐‘ฅ/๐‘ฅ^3 Substituting value of t and dt = (โˆ’1)/2 โˆซ1โ–’๐‘ก^(1/2) ใ€– log ๐‘กใ€—โกใ€– ๐‘‘๐‘กใ€— Hence, (โˆ’1)/2 โˆซ1โ–’ใ€–๐‘ก^(1/2) logโกใ€–๐‘ก ๐‘‘๐‘ก=(โˆ’1)/2 (logโกใ€–๐‘ก โˆซ1โ–’ใ€–๐‘ก^(1/2) ๐‘‘๐‘กใ€—โˆ’โˆซ1โ–’((๐‘‘(logโกใ€–๐‘ก)ใ€—)/๐‘‘๐‘ก โˆซ1โ–’๐‘ก^(1/2) ๐‘‘๐‘ก) ๐‘‘๐‘กใ€— )ใ€— ใ€— = (โˆ’1)/2 (logโกใ€–๐‘ก (๐‘ก^(3/2)/(3/2))โˆ’โˆซ1โ–’ใ€–1/๐‘กร—(๐‘ก^(3/2)/(3/2)) ใ€—ใ€— ๐‘‘๐‘ก) = (โˆ’1)/2 (2/3 ๐‘ก^(3/2) logโกใ€–๐‘กโˆ’2/3ใ€— โˆซ1โ–’ใ€–๐‘ก^(1/2) ๐‘‘๐‘กใ€—) = (โˆ’1)/2 (2/3 ๐‘ก^(3/2) logโกใ€–๐‘กโˆ’2/3ใ€— ( ใ€–2๐‘กใ€—^(3/2))/3) = (โˆ’1)/3 ๐‘ก^(3/2) logโก๐‘ก + 2/9 ๐‘ก^(3/2) Putting value of t = 1 + 1/๐‘ฅ^2 = (โˆ’1)/3 (1+1/๐‘ฅ^2 )^(3/2) logโกใ€–(1+1/๐‘ฅ^2 )+2/9 " " (1+1/๐‘ฅ^2 )^(3/2)+ใ€— C = (โˆ’๐Ÿ)/๐Ÿ‘ (๐Ÿ+๐Ÿ/๐’™^(๐Ÿ ) )^(๐Ÿ‘/๐Ÿ) (๐ฅ๐จ๐ โก(๐Ÿ+๐Ÿ/๐’™^๐Ÿ )โˆ’๐Ÿ/๐Ÿ‘)+ C

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo