Β  Β  Misc 19 - Integrate root 1 - root x / 1 + root x - Class 12 - Miscellaneous

part 2 - Misc 19 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Misc 19 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Misc 19 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Misc 19 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Misc 19 Integrate the function √((1 βˆ’ √π‘₯)/(1 + √π‘₯)) ∫1β–’γ€–βˆš((1 βˆ’ √π‘₯)/(1 + √π‘₯)) 𝑑π‘₯γ€— Let x = 〖𝒄𝒐𝒔〗^𝟐 𝟐𝜽 dx = βˆ’4 cos 2πœƒ sin 2πœƒ dπœƒ Substituting, = ∫1β–’βˆš((1 βˆ’ √((γ€–π‘π‘œπ‘ γ€—^2 2πœƒ) ))/(1 + √((γ€–π‘π‘œπ‘ γ€—^2 2πœƒ) )))Γ—βˆ’4 cos⁑2ΞΈ sin⁑2ΞΈ π‘‘πœƒ = ∫1β–’βˆš((1 βˆ’ cos⁑2πœƒ)/(1 + π‘π‘œπ‘  2πœƒ))Γ—(βˆ’4) cos⁑2ΞΈ sin⁑2ΞΈ π‘‘πœƒ = βˆ’4∫1β–’βˆš((1 βˆ’ (1 βˆ’ 2〖𝑠𝑖𝑛〗^(2 ) πœƒ))/(1 + (2γ€–π‘π‘œπ‘ γ€—^(2 ) πœƒ βˆ’ 1) )) cos⁑2ΞΈ (2 sin⁑θ cosβ‘γ€–πœƒ)γ€— π‘‘πœƒ = βˆ’8∫1β–’βˆš((2〖𝑠𝑖𝑛〗^(2 ) πœƒ)/(2γ€–π‘π‘œπ‘ γ€—^(2 ) πœƒ)) cos⁑2ΞΈ cosβ‘πœƒ sinβ‘πœƒ π‘‘πœƒ = βˆ’8∫1β–’sinβ‘πœƒ/cos⁑θ cos⁑2ΞΈ cosβ‘πœƒ sinβ‘πœƒ π‘‘πœƒ = βˆ’8∫1▒〖〖𝑠𝑖𝑛〗^2 πœƒγ€— cos⁑2ΞΈ π‘‘πœƒ = βˆ’8∫1β–’((1 βˆ’ cos⁑2ΞΈ)/2) cos⁑2ΞΈ π‘‘πœƒ = –4 ∫1β–’(π‘π‘œπ‘  2ΞΈβˆ’cos^2⁑2ΞΈ ) π‘‘πœƒ = 4 ∫1β–’(γ€–π‘π‘œπ‘ γ€—^2 2ΞΈβˆ’cos⁑2ΞΈ ) π‘‘πœƒ = 4 ∫1β–’γ€–γ€–π‘π‘œπ‘ γ€—^2 2ΞΈγ€— π‘‘πœƒβˆ’4∫1β–’cos⁑2ΞΈ π‘‘πœƒ = 4 ∫1β–’(cos⁑4πœƒ + 1)/2 π‘‘πœƒ βˆ’ 4∫1β–’γ€–π‘π‘œπ‘  2πœƒγ€— π‘‘πœƒ = 2 ∫1β–’γ€–(cos⁑4πœƒ + 1)γ€— π‘‘πœƒ βˆ’ 4∫1β–’γ€–π‘π‘œπ‘  2πœƒγ€— π‘‘πœƒ = 2 [(sin⁑4 πœƒ)/4+πœƒ] βˆ’4 [(sin⁑2 πœƒ)/2]+C = sin⁑4πœƒ/2+2πœƒ βˆ’2 𝑠𝑖𝑛 2πœƒ+ C Now x = γ€–π‘π‘œπ‘ γ€—^2 2πœƒ √π‘₯ " = " cos⁑2πœƒ γ€–π‘π‘œπ‘ γ€—^(βˆ’1) √π‘₯=2πœƒ 1/2 γ€–π‘π‘œπ‘ γ€—^(βˆ’1) √π‘₯=πœƒ And, sin 4πœƒ = 2 sin 2πœƒ cos 2πœƒ = 2√(1βˆ’π‘₯)Γ—βˆšπ‘₯ = 2 √π‘₯ √(1βˆ’π‘₯) Putting the values. = sin⁑4πœƒ/2+2ΞΈβˆ’2 sin⁑2ΞΈ+ C = (2√π‘₯ √(1 βˆ’ π‘₯))/2+2 (γ€–π‘π‘œπ‘ γ€—^(βˆ’1) √π‘₯)/2βˆ’2√(1βˆ’π‘₯)+C = √π‘₯ √(1βˆ’π‘₯)+γ€–π‘π‘œπ‘ γ€—^(βˆ’1) √π‘₯βˆ’2√(1βˆ’π‘₯)+ C = √(π‘₯βˆ’π‘₯^2 )+γ€–π‘π‘œπ‘ γ€—^(βˆ’1) √π‘₯βˆ’2√(1βˆ’π‘₯)+C = –2√(πŸβˆ’π’™)+〖𝒄𝒐𝒔〗^(βˆ’πŸ) βˆšπ’™+√(π’™βˆ’π’™^𝟐 )+𝐂

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo