Misc 1 - integrate 1 / x - x3 - Chapter 7 Integrals - Miscellaneous - Miscellaneous

part 2 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals

part 6 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals part 8 - Misc 1 - Miscellaneous - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Misc 1 (Method 1) Integrate the function 1/(π‘₯ βˆ’ π‘₯^3 ) Solving integrand 1/(π‘₯ βˆ’ π‘₯^3 )=1/π‘₯(1 βˆ’ π‘₯^2 ) =𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) We can write it as 𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) = 𝑨/𝒙 + 𝑩/((𝟏 βˆ’ 𝒙) ) + 𝒄/((𝟏 + 𝒙) ) 1/π‘₯(1 βˆ’ π‘₯)(1 + π‘₯) = (𝐴(1 βˆ’ π‘₯) (1 + π‘₯) + 𝐡π‘₯ (1 + π‘₯) + 𝐢π‘₯ (1 βˆ’ π‘₯))/( π‘₯ (1 βˆ’ π‘₯) (1 + π‘₯) ) Cancelling denominator 𝟏 = 𝑨(𝟏 βˆ’ 𝒙) (𝟏 + 𝒙) + 𝑩𝒙 (𝟏 + 𝒙) + π‘ͺ𝒙 (𝟏 βˆ’ 𝒙) Putting 𝒙=𝟎 in (1) 1=𝐴(1 βˆ’ 0) (1 + 0) + 𝐡(0) (1 + 0) + 𝐢(0) (1 βˆ’ 0) 1=𝐴 Γ— 1 Γ— 1 + 𝐡 Γ— 0 + 𝐢 Γ— 0 1=𝐴+0+0 𝑨=𝟏 Putting 𝒙=𝟏 in (1) 1 = 𝐴(1 βˆ’1) (1 +1) + 𝐡(1) (1 +1) + 𝐢(1) (1 βˆ’1) 1 = 𝐴 Γ— 0 + 𝐡 Γ— (1) Γ— (2) + 𝐢 Γ— 0 1 = 0 +2𝐡 + 0 𝑩 = 𝟏/𝟐 Putting 𝒙=βˆ’πŸ in (1) 1 = 𝐴(1 βˆ’(βˆ’1)) (1 +(βˆ’1)) + 𝐡(βˆ’1) (1 +(βˆ’1)) + 𝐢(βˆ’1) (1 βˆ’(βˆ’1)) 1 = 𝐴(1 + 1) (1 βˆ’1) + 𝐡(βˆ’1)(1βˆ’1) + 𝐢(βˆ’1)(1+1) 1 = 𝐴 Γ— 0 + 𝐡 Γ— 0 + 𝐢 Γ—(βˆ’1)(2) 1 = 0 +0 βˆ’2𝐢 1 = βˆ’2𝐢 π‘ͺ = βˆ’πŸ/𝟐 Hence we can write it as 1/π‘₯(1 βˆ’ π‘₯)(1 + π‘₯) = 1/π‘₯ + (𝟏/𝟐)/((1 βˆ’ π‘₯) ) + (βˆ’1/2)/((1 + π‘₯) ) 𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) = 𝟏/𝒙 + 𝟏/𝟐(𝟏 βˆ’ 𝒙) + (βˆ’πŸ)/𝟐(𝟏 + 𝒙) Therefore ∫1β–’πŸ/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) 𝒅𝒙 = ∫1β–’1/π‘₯ 𝑑π‘₯ + ∫1β–’1/2(1 βˆ’ π‘₯) 𝑑π‘₯ + ∫1β–’(βˆ’1)/2(1 + π‘₯) 𝑑π‘₯ = ∫1β–’1/π‘₯ 𝑑π‘₯ + 1/2 ∫1β–’1/((1 βˆ’ π‘₯) ) 𝑑π‘₯ βˆ’ 1/2 ∫1β–’1/((1 + π‘₯) ) 𝑑π‘₯ = γ€–π₯𝐨𝐠 〗⁑|𝒙|+𝟏/𝟐 [γ€–π₯𝐨𝐠 〗⁑|𝟏 βˆ’ 𝒙|/(βˆ’πŸ)] βˆ’1/2 γ€–π₯𝐨𝐠 〗⁑|𝟏 + 𝒙|+π‘ͺ = γ€–log 〗⁑|π‘₯|βˆ’ γ€– 1/2 log 〗⁑|1 βˆ’ π‘₯|βˆ’1/2 γ€–log 〗⁑|1 + π‘₯|+𝐢 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|1 βˆ’ π‘₯|+γ€–log 〗⁑|1 + π‘₯| ]+𝐢 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|1 βˆ’ π‘₯| |1 + π‘₯|]+𝐢 As π’π’π’ˆ 𝑨+π’π’π’ˆ 𝑩=log⁑𝐴𝐡 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )| ]+𝐢 = 1/2 [2 γ€–log 〗⁑|π‘₯|βˆ’γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )|+2𝐢] = 1/2 [γ€–log 〗⁑〖|π‘₯|^2 γ€—βˆ’γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )|+𝐾] = 𝟏/𝟐 log |𝒙^𝟐/((𝟏 βˆ’ 𝒙^𝟐 ) )|+𝑲 As π’π’π’ˆ π‘¨βˆ’π’π’π’ˆ 𝑩=π‘™π‘œπ‘” 𝐴/𝐡 Misc 1 (Method 2) Integrate the function 1/(π‘₯ βˆ’ π‘₯^3 ) Now, ∫1β–’γ€–1/(π‘₯ βˆ’ π‘₯^3 ) 𝑑π‘₯γ€— Taking x3 common from the denominator =∫1β–’1/(π‘₯^3 (π‘₯/π‘₯^3 βˆ’ 1) ) 𝑑π‘₯ =∫1β–’πŸ/(𝒙^πŸ‘ (𝟏/𝒙^𝟐 βˆ’ 𝟏) ) 𝒅𝒙 Let t = 𝟏/𝒙^𝟐 βˆ’πŸ Differentiating with respect to π‘₯ 𝑑/𝑑π‘₯ (1/π‘₯^2 βˆ’1)=𝑑𝑑/𝑑π‘₯ (βˆ’2)/π‘₯^3 =𝑑𝑑/𝑑π‘₯ 𝒅𝒙=(𝒙^πŸ‘ 𝒅𝒕)/(βˆ’πŸ) Putting the value t and dt in the equation ∫1β–’γ€–πŸ/(𝒙^πŸ‘ (𝟏/𝒙^𝟐 βˆ’πŸ) ) 𝒅𝒙〗=∫1β–’γ€–1/(π‘₯^3 (𝑑) ) Γ— (π‘₯^3 𝑑𝑑)/(βˆ’2)γ€— =∫1β–’γ€–πŸ/(βˆ’πŸ) 𝒅𝒕/𝒕〗 =(βˆ’1)/( 2) ∫1▒𝑑𝑑/𝑑 =(βˆ’1)/( 2) π‘™π‘œπ‘”|𝑑|+𝐢 Putting back 𝒕=𝟏/𝒙^𝟐 βˆ’πŸ =(βˆ’1)/( 2) π‘™π‘œπ‘”|1/π‘₯^2 βˆ’1|+𝐢 =(βˆ’1)/( 2) π‘™π‘œπ‘”|(𝟏 βˆ’ 𝒙^𝟐)/𝒙^𝟐 |+𝐢 = 1/2 log |(1 βˆ’ π‘₯^2)/π‘₯^2 |^(βˆ’πŸ)+𝐢 = 𝟏/𝟐 log |𝒙^𝟐/(𝟏 βˆ’ 𝒙^𝟐 )|+π‘ͺ (As a log b = log 𝑏^π‘Ž)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo