Check sibling questions

Ex 6.5, 29 - The max value of [x(x - 1) + 1]^1/3 is (a) (1/3)^1/3

Ex 6.5,29 - Chapter 6 Class 12 Application of Derivatives - Part 2
Ex 6.5,29 - Chapter 6 Class 12 Application of Derivatives - Part 3

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 6.5, 29 The maximum value of γ€–[π‘₯(π‘₯βˆ’1)+1]γ€—^(1/3) 0 ≀ x ≀ 1 is (A) (1/3)^(1/3) (B) 1/2 (C) 1 (D) 0 Let f(π‘₯)=[π‘₯(π‘₯βˆ’1)+1]^(1/3) Finding f’(𝒙) 𝑓(π‘₯)=[π‘₯[π‘₯βˆ’1]+1]^(1/3) 𝑓(π‘₯)=[π‘₯^2βˆ’π‘₯+1]^(1/3) 𝑓^β€² (π‘₯)=(𝑑(π‘₯^2 βˆ’ π‘₯ + 1)^(1/3))/𝑑π‘₯ 𝑓^β€² (π‘₯)=1/3 (π‘₯^2βˆ’π‘₯+1)^(1/3 βˆ’ 1) . 𝑑(π‘₯^2 βˆ’ π‘₯ + 1)/𝑑π‘₯ 𝑓^β€² (π‘₯)=1/3 (π‘₯^2βˆ’π‘₯+1)^((βˆ’2)/3) (2π‘₯βˆ’1) 𝑓^β€² (π‘₯)=1/(3(π‘₯^2 βˆ’ π‘₯ + 1)^(2/3) ) .(2π‘₯βˆ’1) 𝑓^β€² (π‘₯)=(2π‘₯ βˆ’ 1)/(3(π‘₯^2 βˆ’ π‘₯ + 1)^(2/3) ) Putting f’(𝒙)=𝟎 (2π‘₯βˆ’1)/(3(π‘₯^2 βˆ’ π‘₯ + 1)^(2/3) )=0 2π‘₯βˆ’1=0 2π‘₯=1 π‘₯=1/2 Since, 0 ≀ x ≀ 1 Hence, critical points are π‘₯=0 ,1/2 , & 1 Hence, Maximum value is 1 at π‘₯=0 , 1 ∴ Hence, correct answer is C

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.