

Ex 6.5
Ex 6.5, 1 (ii)
Ex 6.5, 1 (iii) Important
Ex 6.5, 1 (iv)
Ex 6.5, 2 (i)
Ex 6.5, 2 (ii) Important
Ex 6.5, 2 (iii)
Ex 6.5, 2 (iv) Important
Ex 6.5, 2 (v) Important
Ex 6.5, 3 (i)
Ex 6.5, 3 (ii)
Ex 6.5, 3 (iii)
Ex 6.5, 3 (iv) Important
Ex 6.5, 3 (v)
Ex 6.5, 3 (vi)
Ex 6.5, 3 (vii) Important
Ex 6.5, 3 (viii)
Ex 6.5, 4 (i)
Ex 6.5, 4 (ii) Important
Ex 6.5, 4 (iii)
Ex 6.5, 5 (i)
Ex 6.5, 5 (ii)
Ex 6.5, 5 (iii) Important
Ex 6.5, 5 (iv)
Ex 6.5,6
Ex 6.5,7 Important
Ex 6.5,8
Ex 6.5,9 Important
Ex 6.5,10
Ex 6.5,11 Important
Ex 6.5,12 Important
Ex 6.5,13
Ex 6.5,14 Important
Ex 6.5,15 Important
Ex 6.5,16
Ex 6.5,17
Ex 6.5,18 Important
Ex 6.5,19 Important
Ex 6.5, 20 Important
Ex 6.5,21
Ex 6.5,22 Important
Ex 6.5,23 Important
Ex 6.5,24 Important
Ex 6.5,25 Important
Ex 6.5,26 Important
Ex 6.5, 27 (MCQ)
Ex 6.5,28 (MCQ) Important
Ex 6.5,29 (MCQ) You are here
Last updated at Aug. 9, 2021 by Teachoo
Ex 6.5, 29 The maximum value of γ[π₯(π₯β1)+1]γ^(1/3) 0 β€ x β€ 1 is (A) (1/3)^(1/3) (B) 1/2 (C) 1 (D) 0 Let f(π₯)=[π₯(π₯β1)+1]^(1/3) Finding fβ(π) π(π₯)=[π₯[π₯β1]+1]^(1/3) π(π₯)=[π₯^2βπ₯+1]^(1/3) π^β² (π₯)=(π(π₯^2 β π₯ + 1)^(1/3))/ππ₯ π^β² (π₯)=1/3 (π₯^2βπ₯+1)^(1/3 β 1) . π(π₯^2 β π₯ + 1)/ππ₯ π^β² (π₯)=1/3 (π₯^2βπ₯+1)^((β2)/3) (2π₯β1) π^β² (π₯)=1/(3(π₯^2 β π₯ + 1)^(2/3) ) .(2π₯β1) π^β² (π₯)=(2π₯ β 1)/(3(π₯^2 β π₯ + 1)^(2/3) ) Putting fβ(π)=π (2π₯β1)/(3(π₯^2 β π₯ + 1)^(2/3) )=0 2π₯β1=0 2π₯=1 π₯=1/2 Since, 0 β€ x β€ 1 Hence, critical points are π₯=0 ,1/2 , & 1 Hence, Maximum value is 1 at π₯=0 , 1 β΄ Hence, correct answer is C