


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important You are here
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at May 29, 2023 by Teachoo
Ex 6.3, 7 Find both the maximum value and the minimum value of 3π₯4 β 8π₯3 + 12π₯2 β 48π₯ + 25 on the interval [0, 3].Let f(x) = 3π₯4 β 8π₯3 + 12π₯2 β 48π₯ + 25, where π₯ β [0, 3] Finding fβ(π) fβ(π₯)=π(3π₯^4 β 8π₯^3 + 12π₯^2 β 48π₯ + 25)/ππ₯ fβ(π₯)=3 Γ4π₯^3β8 Γ3π₯^2+12 Γ2π₯β48+0 fβ(π₯)=12π₯^3β24π₯^2+24π₯β48 fβ(π₯)=12(π₯^3β2π₯^2+2π₯β4) Putting fβ(π)=π 12(π₯^3β2π₯^2+2π₯β4)=0 π₯^3β2π₯^2+2π₯β4=0 π₯^2 (π₯β2)+2(π₯β2)=0 (π₯^2+2)(π₯β2)=0 Since π₯^2=β2 is not possible Thus π₯=2 is only critical point Square of number can not be negative π₯^2+2=0 π₯^2=β2 π₯β2=0 π₯=2 Since are given interval π₯ β [0 , 3] Hence , calculating f(π₯) at π₯ = 0 , 2 & 3 Hence, Minimum value of f(π₯) is β39 at π = 2 Maximum value of f(π₯) is 25 at π = 0