Ex 6.3,12 - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important You are here
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 6.3, 12 Find the maximum and minimum values of ๐ฅ + sin 2๐ฅ on [0, 2ฯ ] Let f(๐ฅ)=๐ฅ + sin 2๐ฅ Finding fโ(๐) ๐โ(๐ฅ)=๐(๐ฅ + sin 2๐ฅ)/๐๐ฅ =1+2 cosโก2๐ฅ Putting fโ(๐)=๐ 1 + 2 cos 2๐ฅ=0 2 cos 2๐ฅ=โ1 cos 2๐ฅ=(โ1)/2 cos 2๐ฅ=cosโกใ2๐/3ใ General solution for cos 2๐ฅ is 2๐ฅ=2๐๐ยฑ2๐/3 ๐ฅ=(2๐๐ ยฑ 2๐/3)/2 ๐ฅ= nฯ ยฑ ๐/3 Putting ๐=0 ๐ฅ=0(๐)ยฑ๐/3 =ยฑ๐/3 " " We know that ๐๐๐ 60ยฐ=1/2 And cos is negative in 2nd & 3rd quadrant ๐ = 180 โ 60 = 120 = 120 ร ๐/180 = 2๐/3 So, ๐ฅ=(โ๐)/3,๐/3 Since Given ๐ฅ โ[0 , 2๐] โด ๐ฅ=๐/3 only Putting ๐=1 ๐ฅ=(1)๐ยฑ๐/3 =๐ยฑ๐/3 =(3๐ + ๐)/3 , (3๐ โ ๐)/3 =4๐/3 , 2๐/3 Putting ๐=2 ๐ฅ=2(๐)ยฑ๐/3 ๐ฅ=2๐โ๐/3 & 2๐+๐/3 ๐ฅ=(6๐ โ ๐)/3 & (6๐ + ๐)/3 ๐ฅ=5๐/3 & 7๐/3 So, ๐ฅ=5๐/3 only Also, We are given interval ๐ฅ โ[0 , 2๐] Hence , calculating f(๐ฅ) at ๐ฅ=0 , ๐/3 , 2๐/3 , 4๐/3 , 5๐/3 , 2๐ Hence, f(๐ฅ) is Maximum at ๐ฅ=2๐ Maximum value of f(๐)=๐๐ & f(๐ฅ) is Minimum at ๐ฅ=0 Minimum value of f(๐)=๐