






Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii) You are here
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at June 12, 2023 by Teachoo
Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (viii) f(𝑥) = 𝑥√(1−𝑥), 𝑥 > 0= √(1−𝑥) + 1/(2√(1 − 𝑥)) (0 −1) . 𝑥 = √(1−𝑥) – 𝑥/(2√(1 − 𝑥)) = (2(√(1 − 𝑥) )^2− 𝑥)/(2√(1 − 𝑥)) = (2(1 − 𝑥) − 𝑥)/(2√(1 − 𝑥)) = (2 − 2𝑥 − 𝑥)/(2√(1 − 𝑥)) = (2 − 3𝑥)/(2√(1 − 𝑥)) Putting f’(𝒙)=𝟎 (2 − 3𝑥)/(2√(1 − 𝑥))=0 2 – 3𝑥 = 0 × 2√(1−𝑥) 2 – 3𝑥=0 – 3𝑥=−2 𝑥 =2/3 Finding f’’(𝒙) f’(𝑥)=(2 − 3𝑥)/(2√(1 − 𝑥)) f’’(𝑥)=𝑑/𝑑𝑥 ((2 − 3𝑥)/(2√(1 − 𝑥))) = 1/2 [(𝑑(2 − 3𝑥)/𝑑𝑥 . √(1 − 𝑥) − 𝑑(√(1 − 𝑥))/𝑑𝑥 . (2 − 3𝑥))/(√(1 − 𝑥))^2 ] = 1/2 [((0 − 3) √(1 − 𝑥) − 1/(2√(1 − 𝑥)) . 𝑑(1 − 𝑥)/𝑑𝑥 . (2 − 3𝑥))/((1 − 𝑥) )] = 1/2 [(−3√(1 − 𝑥) − 1/(2√(1 − 𝑥)) (0 − 1) . (2 − 3𝑥))/((1 − 𝑥) )] = 1/2 [(−3√(1 − 𝑥) + (2 − 3𝑥)/(2√(1 − 𝑥)) )/(1 − 𝑥)] = 1/2 [((−3√(1 − 𝑥)) (2√(1 − 𝑥)) + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/2 [(−6(1 − 𝑥) + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/2 [(−6 + 6𝑥 + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/4 [(−4 + 3𝑥 )/(1 + 𝑥)^(3/2) ] Hence, f’’(𝑥)=1/4 [(−4 + 3𝑥 )/(1 + 𝑥)^(3/2) ] Putting 𝑥=2/3 f’’(2/3)=1/4 [(−4 + 3(2/3))/(1 + 2/3)^(3/2) ] =1/4 [(−4 + 2)/(5/3)^(3/2) ] =1/4 [(−2)/(5/3)^(3/2) ] = (− 1)/2 (3/5)^(3/2) < 0 Since f’’(𝑥)<0 when 𝑥 = 2/3 Hence, 𝑥=2/3 is the maxima Finding Maximum value of f(𝒙)=𝒙√(𝟏−𝒙) Putting 𝑥=2/3 f(2/3)=2/3 √(1−2/3) =2/3 √((3 − 2)/3) Finding Maximum value of f(𝒙)=𝒙√(𝟏−𝒙) Putting 𝑥=2/3 f(𝑥) = 𝑥√(1−𝑥) f(2/3)=2/3 √(1−2/3) =2/3 √((3 − 2)/3) =2/3 √(1/3) =2/(3√3) =2/(3√3) × √3/√3 =(2√3)/9 Maximum value of f(𝒙) is (𝟐√𝟑)/𝟗 at x = 𝟐/𝟑