Slide23.JPG

Slide24.JPG
Slide25.JPG
Slide26.JPG
Slide27.JPG Slide28.JPG Slide29.JPG Slide30.JPG

Share on WhatsApp

Transcript

Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (viii) f(𝑥) = 𝑥√(1−𝑥), 𝑥 > 0= √(1−𝑥) + 1/(2√(1 − 𝑥)) (0 −1) . 𝑥 = √(1−𝑥) – 𝑥/(2√(1 − 𝑥)) = (2(√(1 − 𝑥) )^2− 𝑥)/(2√(1 − 𝑥)) = (2(1 − 𝑥) − 𝑥)/(2√(1 − 𝑥)) = (2 − 2𝑥 − 𝑥)/(2√(1 − 𝑥)) = (2 − 3𝑥)/(2√(1 − 𝑥)) Putting f’(𝒙)=𝟎 (2 − 3𝑥)/(2√(1 − 𝑥))=0 2 – 3𝑥 = 0 × 2√(1−𝑥) 2 – 3𝑥=0 – 3𝑥=−2 𝑥 =2/3 Finding f’’(𝒙) f’(𝑥)=(2 − 3𝑥)/(2√(1 − 𝑥)) f’’(𝑥)=𝑑/𝑑𝑥 ((2 − 3𝑥)/(2√(1 − 𝑥))) = 1/2 [(𝑑(2 − 3𝑥)/𝑑𝑥 . √(1 − 𝑥) − 𝑑(√(1 − 𝑥))/𝑑𝑥 . (2 − 3𝑥))/(√(1 − 𝑥))^2 ] = 1/2 [((0 − 3) √(1 − 𝑥) − 1/(2√(1 − 𝑥)) . 𝑑(1 − 𝑥)/𝑑𝑥 . (2 − 3𝑥))/((1 − 𝑥) )] = 1/2 [(−3√(1 − 𝑥) − 1/(2√(1 − 𝑥)) (0 − 1) . (2 − 3𝑥))/((1 − 𝑥) )] = 1/2 [(−3√(1 − 𝑥) + (2 − 3𝑥)/(2√(1 − 𝑥)) )/(1 − 𝑥)] = 1/2 [((−3√(1 − 𝑥)) (2√(1 − 𝑥)) + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/2 [(−6(1 − 𝑥) + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/2 [(−6 + 6𝑥 + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/4 [(−4 + 3𝑥 )/(1 + 𝑥)^(3/2) ] Hence, f’’(𝑥)=1/4 [(−4 + 3𝑥 )/(1 + 𝑥)^(3/2) ] Putting 𝑥=2/3 f’’(2/3)=1/4 [(−4 + 3(2/3))/(1 + 2/3)^(3/2) ] =1/4 [(−4 + 2)/(5/3)^(3/2) ] =1/4 [(−2)/(5/3)^(3/2) ] = (− 1)/2 (3/5)^(3/2) < 0 Since f’’(𝑥)<0 when 𝑥 = 2/3 Hence, 𝑥=2/3 is the maxima Finding Maximum value of f(𝒙)=𝒙√(𝟏−𝒙) Putting 𝑥=2/3 f(2/3)=2/3 √(1−2/3) =2/3 √((3 − 2)/3) Finding Maximum value of f(𝒙)=𝒙√(𝟏−𝒙) Putting 𝑥=2/3 f(𝑥) = 𝑥√(1−𝑥) f(2/3)=2/3 √(1−2/3) =2/3 √((3 − 2)/3) =2/3 √(1/3) =2/(3√3) =2/(3√3) × √3/√3 =(2√3)/9 Maximum value of f(𝒙) is (𝟐√𝟑)/𝟗 at x = 𝟐/𝟑

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo