Get live Maths 1-on-1 Classs - Class 6 to 12

Ex 6.5

Ex 6.5, 1 (i)
Important

Ex 6.5, 1 (ii)

Ex 6.5, 1 (iii) Important

Ex 6.5, 1 (iv)

Ex 6.5, 2 (i)

Ex 6.5, 2 (ii) Important

Ex 6.5, 2 (iii)

Ex 6.5, 2 (iv) Important

Ex 6.5, 2 (v) Important

Ex 6.5, 3 (i)

Ex 6.5, 3 (ii)

Ex 6.5, 3 (iii)

Ex 6.5, 3 (iv) Important

Ex 6.5, 3 (v)

Ex 6.5, 3 (vi)

Ex 6.5, 3 (vii) Important

Ex 6.5, 3 (viii) You are here

Ex 6.5, 4 (i)

Ex 6.5, 4 (ii) Important

Ex 6.5, 4 (iii)

Ex 6.5, 5 (i)

Ex 6.5, 5 (ii)

Ex 6.5, 5 (iii) Important

Ex 6.5, 5 (iv)

Ex 6.5,6

Ex 6.5,7 Important

Ex 6.5,8

Ex 6.5,9 Important

Ex 6.5,10

Ex 6.5,11 Important

Ex 6.5,12 Important

Ex 6.5,13

Ex 6.5,14 Important

Ex 6.5,15 Important

Ex 6.5,16

Ex 6.5,17

Ex 6.5,18 Important

Ex 6.5,19 Important

Ex 6.5, 20 Important

Ex 6.5,21

Ex 6.5,22 Important

Ex 6.5,23 Important

Ex 6.5,24 Important

Ex 6.5,25 Important

Ex 6.5, 26 Important

Ex 6.5, 27 (MCQ)

Ex 6.5,28 (MCQ) Important

Ex 6.5,29 (MCQ)

Last updated at March 16, 2023 by Teachoo

Ex 6.5, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (viii) f(π₯) = π₯β(1βπ₯), π₯ > 0Finding fβ(π) fβ(π₯)=π(π₯β(1 β π₯))/ππ₯ fβ(π₯)=π(π₯)/ππ₯ . β(1βπ₯) + π(β(1 β π₯))/ππ₯ . π₯ = 1 . β(1βπ₯) + 1/(2β(1 β π₯)) . π(1 β π₯)/ππ₯ . π₯ = β(1βπ₯) + 1/(2β(1 β π₯)) (0 β1) . π₯ = β(1βπ₯) β π₯/(2β(1 β π₯)) = (2(β(1 β π₯) )^2β π₯)/(2β(1 β π₯)) = (2(1 β π₯) β π₯)/(2β(1 β π₯)) = (2 β 2π₯ β π₯)/(2β(1 β π₯)) = (2 β 3π₯)/(2β(1 β π₯)) Putting fβ(π)=π (2 β 3π₯)/(2β(1 β π₯))=0 2 β 3π₯ = 0 Γ 2β(1βπ₯) 2 β 3π₯=0 β 3π₯=β2 π₯ =2/3 Finding fββ(π) fβ(π₯)=(2 β 3π₯)/(2β(1 β π₯)) fββ(π₯)=π/ππ₯ ((2 β 3π₯)/(2β(1 β π₯))) = 1/2 [(π(2 β 3π₯)/ππ₯ . β(1 β π₯) β π(β(1 β π₯))/ππ₯ . (2 β 3π₯))/(β(1 β π₯))^2 ] = 1/2 [((0 β 3) β(1 β π₯) β 1/(2β(1 β π₯)) . π(1 β π₯)/ππ₯ . (2 β 3π₯))/((1 β π₯) )] Using quotient rule as (π’/π£)^β²=(π’^β² π£ β π£^β² π’)/π£^2 = 1/2 [(β3β(1 β π₯) β 1/(2β(1 β π₯)) (0 β 1) . (2 β 3π₯))/((1 β π₯) )] = 1/2 [(β3β(1 β π₯) + (2 β 3π₯)/(2β(1 β π₯)) )/(1 β π₯)] = 1/2 [((β3β(1 β π₯)) (2β(1 β π₯)) + 2 β 3π₯ )/(2(1 β π₯) β(1 β π₯))] = 1/2 [(β6(1 β π₯) + 2 β 3π₯ )/(2(1 β π₯) β(1 β π₯))] = 1/2 [(β6 + 6π₯ + 2 β 3π₯ )/(2(1 β π₯) β(1 β π₯))] = 1/4 [(β4 + 3π₯ )/(1 + π₯)^(3/2) ] Hence, fββ(π₯)=1/4 [(β4 + 3π₯ )/(1 + π₯)^(3/2) ] Putting π₯=2/3 fββ(2/3)=1/4 [(β4 + 3(2/3))/(1 + 2/3)^(3/2) ] =1/4 [(β4 + 2)/(5/3)^(3/2) ] =1/4 [(β2)/(5/3)^(3/2) ] = (β 1)/2 (3/5)^(3/2) < 0 Since fββ(π₯)<0 when π₯ = 2/3 Hence, π₯=2/3 is the maxima Finding Maximum value of f(π)=πβ(πβπ) Putting π₯=2/3 f(2/3)=2/3 β(1β2/3) =2/3 β((3 β 2)/3) Finding Maximum value of f(π)=πβ(πβπ) Putting π₯=2/3 f(π₯) = π₯β(1βπ₯) f(2/3)=2/3 β(1β2/3) =2/3 β((3 β 2)/3) =2/3 β(1/3) =2/(3β3) =2/(3β3) Γ β3/β3 =(2β3)/9 Maximum value of f(π) is (πβπ)/π at x = π/π