Β  Ex 6.3, 3 (iii) - For h(x) = sin x + cos x, find local maxima and mini - Ex 6.3

part 2 - Ex 6.3, 3 (iii) - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Ex 6.3, 3 (iii) - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Ex 6.3, 3 (iii) - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Remove Ads

Transcript

Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (iii) β„Ž(π‘₯)=sin⁑π‘₯+cos⁑π‘₯, 0<π‘₯<πœ‹/2 β„Ž(π‘₯)=sin⁑π‘₯+cos⁑π‘₯, 0<π‘₯<πœ‹/2 Finding 𝒉′(𝒙) β„Žβ€²(π‘₯)=𝑑(sin⁑π‘₯ + cos⁑π‘₯" " )/𝑑π‘₯ β„Ž^β€² (π‘₯)=cos⁑π‘₯βˆ’sin⁑π‘₯ Putting 𝒉′(𝒙)=𝟎 cos⁑π‘₯βˆ’π‘ π‘–π‘›π‘₯=0 cos⁑〖π‘₯=𝑠𝑖𝑛 π‘₯γ€— 1 = sin⁑π‘₯/cos⁑π‘₯ 1 = tan π‘₯ tan π‘₯=1 ∴ π‘₯=45Β°= πœ‹/4 Finding h’’(𝒙) h’(π‘₯)=cos⁑π‘₯βˆ’sin⁑π‘₯ h’’(π‘₯)=βˆ’sin⁑π‘₯βˆ’cos⁑π‘₯ Putting 𝒙=𝝅/πŸ’ h’’(Ο€/4)=βˆ’sin(Ο€/4)βˆ’π‘π‘œπ‘ (Ο€/4) = – 1/√2βˆ’1/√2 = (βˆ’2)/√2 = – √2 Since h’’(π‘₯)<0 when π‘₯=Ο€/4 ∴ π‘₯=Ο€/4 is point of Local Maxima f has Maximum value at 𝒙=𝝅/πŸ’ f(π‘₯)=𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯ f(Ο€/4)=𝑠𝑖𝑛(Ο€/4)+π‘π‘œπ‘ (Ο€/4) = 1/√2+1/√2 = 2/√2 = √𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo