









Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important You are here
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at May 29, 2023 by Teachoo
Ex 6.3, 15 (Method 1) Find two positive numbers π₯ and π¦ such that their sum is 35 and the product π₯2 π¦5 is a maximum. Given two number are π₯ & π¦ Such that π₯ + π¦ = 35 π¦ = 35 β π₯ Let P = π₯2 π¦5 We need to maximize P Finding Pβ(π) P(π₯)=π₯^2 π¦^5 P(π₯)=π₯^2 (35βπ₯)^5 Pβ(π₯)=π(π₯^2 (35 β π₯)^5 )/ππ₯ Pβ(π₯)=π(π₯^2 )/ππ₯ . (35βπ₯)^5+(π(35 β π₯)^5)/ππ₯ . π₯^2 =2π₯ .(35βπ₯)^5+γ5(35βπ₯)γ^4 .π(35 β π₯)/ππ₯ . π₯^2 =2π₯ .(35βπ₯)^5+γ5(35βπ₯)γ^4 . (0β1)(π₯^2 ) =2π₯ .(35βπ₯)^5+γ5(35βπ₯)γ^4 (βπ₯^2 ) =2π₯ (35βπ₯)^5βγ5π₯^2 (35βπ₯)γ^4 = γ π₯ (35βπ₯)γ^4 [2(35βπ₯)β5π₯] = γ π₯ (35βπ₯)γ^4 (70β7π₯) using product rule as (π’π£)^β²=π’^β² π£+π£^β² π’ Putting Pβ(π)=π γ π₯ (35βπ₯)γ^4 (70β7π₯)=0 Hence π₯ = 0 , 10 , 35 are Critical Points But, If we Take π₯ = 0 Product will be 0 So, x = 0 is not possible (35βπ₯)^4= 0 35βπ₯=0 π₯=35 70β7π₯= 0 7π₯=70 π₯=70/7 π₯= 10 If x = 35 π¦ = 35 β 35 = 35 β 35 = 0 So, product will be 0 So, x = 35 is not possible Hence only critical point is π₯=10 Finding Pββ(π) Pβ(π₯)=π₯(35βπ₯)^4 (70β7π₯) Pβ(π₯)=(35βπ₯)^4 (70π₯β7π₯^2 ) Pββ(π₯)=(π(35 β π₯)^4)/ππ₯. (70π₯β7π₯^2 )+π(70π₯ β 7π₯^2 )/ππ₯ (35βπ₯)^4 =4(35βπ₯)^3.π(35 β π₯)/ππ₯. (70π₯β7π₯^2 )+(70β14π₯) (35βπ₯)^4 Using product rule as (π’π£)^β²=π’^β² π£+π£^β² π’ =4(35βπ₯)^3 (0β1)(70π₯β7π₯^2 )+(70β14π₯) (35βπ₯)^4 =β4(35βπ₯)^3 (70π₯β7π₯^2 )+(70β14π₯) (35βπ₯)^4 Putting π₯ = 10 in Pββ(x) Pββ(π₯) = β4(35βπ₯)^3 (70π₯β7π₯^2 )+(70β14π₯) (35βπ₯)^4 =β4(35β10)^3 (70(10)β7(10)^2 )+(70β14(10)) (35β10)^4 =β4(25)^3 (700β700)+(70β140) (25)^4 =β4(25)^3 (0)+(β70) (25)^4 =0β70(25)^4 =β70(25)^4 < 0 Thus, Pββ(π₯)<0 when π₯ = 10 β΄ P is maximum when π₯ = 10 Thus, when π₯ = 10 π¦ = 35 β π₯= 35 β10=25 Hence π = 10 & π = 25 Ex 6.3, 15 (Method 2) Find two positive numbers π₯ and π¦ such that their sum is 35 and the product π₯2 π¦5 is a maximum. Given two number are π₯ & π¦ Such that π₯ + π¦ = 35 π¦ = 35 β π₯ Let P = π₯2 π¦5 We need to maximise P Finding Pβ(π) P(π₯)=π₯^2 π¦^5 P(π₯)=π₯^2 (35βπ₯)^5 Pβ(π₯)=π(π₯^2 (35 β π₯)^5 )/ππ₯ Pβ(π₯)=π(π₯^2 )/ππ₯ . (35βπ₯)^5+(π(35 β π₯)^5)/ππ₯ . π₯^2 =2π₯ .(35βπ₯)^5+γ5(35βπ₯)γ^4 .π(35 β π₯)/ππ₯ . π₯^2 =2π₯ .(35βπ₯)^5+γ5(35βπ₯)γ^4 . (0β1)(π₯^2 ) =2π₯ .(35βπ₯)^5+γ5(35βπ₯)γ^4 (βπ₯^2 ) =2π₯ (35βπ₯)^5βγ5π₯^2 (35βπ₯)γ^4 = γ π₯ (35βπ₯)γ^4 [2(35βπ₯)β5π₯] = γ π₯ (35βπ₯)γ^4 (70β7π₯) Using product rule as (π’π£)^β²=π’^β² π£+π£^β² π’ Putting Pβ(π)=π γπ₯ (35βπ₯)γ^4 (70β7π₯)=0 γπ₯ (35βπ₯)γ^4 (70β7π₯)=0 Hence π₯ = 0 , 10 , 35 are Critical Points But, If We Take π₯ = 0 Product will be 0 So, x = 0 is not possible (35βπ₯)^4= 0 35βπ₯=0 π₯=35 70β7π₯= 0 7π₯=70 π₯=70/7 π₯= 10 If x = 35 π¦ = 35 β 35 = 35 β 35 = 0 So, product will be 0 So, x = 35 is not possible Hence only critical point is π₯=10 β΄ π₯ = 10 is point of maxima P(π₯) is maximum at π₯ = 10 Thus, when π₯ = 10 π¦ = 35 β π₯= 35 β10=25 Hence π = 10 & π = 25