Learn Intergation from Davneet Sir - Live lectures starting soon!

Ex 6.5

Ex 6.5, 1 (i)
Important

Ex 6.5, 1 (ii)

Ex 6.5, 1 (iii) Important

Ex 6.5, 1 (iv)

Ex 6.5, 2 (i)

Ex 6.5, 2 (ii) Important

Ex 6.5, 2 (iii)

Ex 6.5, 2 (iv) Important

Ex 6.5, 2 (v) Important

Ex 6.5, 3 (i)

Ex 6.5, 3 (ii)

Ex 6.5, 3 (iii)

Ex 6.5, 3 (iv) Important

Ex 6.5, 3 (v)

Ex 6.5, 3 (vi)

Ex 6.5, 3 (vii) Important

Ex 6.5, 3 (viii)

Ex 6.5, 4 (i)

Ex 6.5, 4 (ii) Important

Ex 6.5, 4 (iii)

Ex 6.5, 5 (i)

Ex 6.5, 5 (ii)

Ex 6.5, 5 (iii) Important

Ex 6.5, 5 (iv) You are here

Ex 6.5,6

Ex 6.5,7 Important

Ex 6.5,8

Ex 6.5,9 Important

Ex 6.5,10

Ex 6.5,11 Important

Ex 6.5,12 Important

Ex 6.5,13

Ex 6.5,14 Important

Ex 6.5,15 Important

Ex 6.5,16

Ex 6.5,17

Ex 6.5,18 Important

Ex 6.5,19 Important

Ex 6.5, 20 Important

Ex 6.5,21

Ex 6.5,22 Important

Ex 6.5,23 Important

Ex 6.5,24 Important

Ex 6.5,25 Important

Ex 6.5, 26 Important

Ex 6.5, 27 (MCQ)

Ex 6.5,28 (MCQ) Important

Ex 6.5,29 (MCQ)

Last updated at Aug. 19, 2021 by Teachoo

Ex 6.5, 5 Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals: (iv) f (π₯) = (π₯ β1)2 + 3, π₯ β [β3,1] f (π₯) = (π₯ β1)2 + 3 Finding fβ(π) fβ(x) = π((π₯ β 1)^2+3)/ππ₯ = 2(π₯β1) Putting fβ(π)=π 2(π₯β1)=0 π₯β1=0 π₯=1 Since given interval π₯ β [β3 , 1] Hence , calculating f(π₯) at π₯ = β 3 , 1 Absolute Minimum value of f(x) is 3 at π = 1 & Absolute Maximum value of f(x) is 19 at π = β 3