Ex 6.3, 1 (iv) - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv) You are here
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 6.3,1 (Method 1) Find the maximum and minimum values, if any, of the following functions given by (iv) f(đĽ) = đĽ3 + 1f(đĽ)=đĽ^3+1 Finding fâ(x) fâ(đĽ)=đ(đĽ^3 + 1)/đđĽ =3đĽ^2 Putting fâ(đ)=đ 3đĽ^2=0 đĽ^2=0 đĽ=0 Therefore by first derivate test, the point đĽ=0 is neither a point of local maxima nor a point of local Minima Hence đ=đ is point of inflexion Hence, there is no minimum or maximum value Ex 6.3, 1 (Method 2) Find the maximum and minimum values, if any, of the following functions given by (iv) f(đĽ) = đĽ3 + 1f(đĽ)=đĽ^3+1 Finding fâ(x) fâ(đĽ)=đ(đĽ^3+1)/đđĽ =3đĽ^2 Putting fâ(đ)=đ 3đĽ^2=0 đĽ^2=0 đĽ=0 Finding fââ(x) fâ(x) = 3x2 fââ(x) = 6x Finding fââ(x) at x = 0 fââ(0) = 6 Ă 0 = 0 Since fââ(x) = 0 at x = 0 â´ The point đĽ=0 is neither a point of local maxima nor a point of local Minima Hence đ=đ is point of inflexion Hence, there is no minimum or maximum value