








Last updated at Sept. 28, 2018 by Teachoo
Transcript
Ex 6.5, 24 Show that the right circular cone of least curved surface and given volume has an altitude equal to √2 time the radius of the base Let r & h be the radius & height of a cone respectively And V & S be the volume & curved surface area of cone respectively Given volume of cone is constant Volume of cone = 1/3 𝜋(𝑟𝑎𝑑𝑖𝑢𝑠)^2 (ℎ𝑒𝑖𝑔ℎ𝑡) V = 1/3 𝜋(𝑟)^2 ℎ 3𝑉/𝜋=𝑟^2 ℎ h = (3𝑉/𝜋) 1/𝑟^2 ℎ= 𝑘/𝑟^2 We need to show Curved surface Area is least & Altitude = √2 times of radius of base i.e. ℎ=√2 𝑟 Now, Curved Surface Area of Cone = π 𝑟𝑙 Putting 𝑙 = √(ℎ^2+𝑟^2 ) S = π 𝑟 √(ℎ^2+𝑟^2 ) S = π 𝑟 √((𝑘/𝑟^2 )^2+𝑟^2 ) S = π 𝑟 √(𝑘^2/𝑟^4 +𝑟^2 ) S = π 𝑟 √((𝑘^2 + 𝑟^6)/𝑟^4 ) S = π 𝑟/𝑟^2 √(𝑘^2+𝑟^6 ) S = 𝜋/𝑟 √(𝑘^2+𝑟^6 ) S = π [(√(𝑘^2 + 𝑟^6 ) " " )/𝑟] Diff w.r.t r 𝑑𝑠/𝑑𝑟=𝜋 𝑑/𝑑𝑟 [(√(𝑘^2 + 𝑟^6 ) " " )/𝑟] =𝜋[((√(𝑘^2 + 𝑟^6 ))^′ (𝑟) − (𝑟)^′ (√(𝑘^2 + 𝑟^6 )))/𝑟^2 ] =𝜋[(𝑟/(2√(𝑘^2 + 𝑟^6 )) × 𝑑(𝑘^2 + 𝑟^6 )/( 𝑑𝑟) . 𝑟 −1 .√(𝑘^2 + 𝑟^6 ))/𝑟^2 ] =𝜋[(𝑟/(2√(𝑘^2 + 𝑟^6 )) . (0 + 6𝑟^5 ) − √(𝑘^2 + 𝑟^6 ))/𝑟^2 ] =𝜋[((6𝑟^6)/(2√(𝑘^2 + 𝑟^6 )) − √(𝑘^2 + 𝑟^6 ))/𝑟^2 ] =𝜋[(6𝑟^6 − 2(√(𝑘^2 + 𝑟^6 ))^2)/(2√(𝑘^2 + 𝑟^6 ) × 𝑟^2 )] =𝜋[(6𝑟^6− 2(𝑘^2 + 𝑟^6 ))/(2𝑟^2 √(𝑘^2 + 𝑟^6 ))] =𝜋[(6𝑟^6− 2𝑘^2− 2𝑟^6)/(2𝑟^2 √(𝑘^2+〖 𝑟〗^6 ))] =𝜋[(4𝑟^6− 2𝑘^2)/(2𝑟^2 √(𝑘^2 + 𝑟^6 ))] =𝜋[2(2𝑟^6−𝑘^2 )/(2𝑟^2 √(𝑘^2+ 𝑟^2 ) )] =𝜋[((2𝑟^6−𝑘^2 ))/(𝑟^2 √(𝑘^2+ 𝑟^2 ) )] Putting 𝑑𝑠/𝑑𝑟=0 𝜋[(2𝑟^6− 𝑘^2)/(𝑟^2 √(𝑘^2+ 𝑟^2 ))]=0 2𝑟^6−𝑘^2=0 ×𝜋 ×𝑟^2 √(𝑘^2+𝑟^2 ) 2𝑟^6−𝑘^2=0 𝑟^6=𝑘^2/2 Now, Finding (𝑑^2 𝑠)/(𝑑𝑟^2 ) 𝑑𝑠/𝑑𝑟=𝜋[((2𝑟^6− 𝑘^2 ))/(𝑟^2 √(𝑘^2+ 𝑟^6 ))] 𝑑𝑠/𝑑𝑟=𝜋[(2𝑟^6− 𝑘^2)/√(𝑘^2 𝑟^4 + 𝑟^10 )] Diff Again w.r.t 𝑟 (𝑑^2 𝑠)/(𝑑𝑟^2 )=𝜋[((𝑑(2𝑟^6− 𝑘^2 )/𝑑𝑟 .√(𝑘^2 𝑟^4 + 𝑟^10 )) − ((𝑑√(𝑘^2 𝑟^4 + 𝑟^10 ))/( 𝑑𝑟) . (2𝑟^6− 𝑘^2 )) )/(√(𝑘^2 𝑟^4 + 𝑟^10 ))^2 ] =𝜋[((12𝑟^5+ 0) √(𝑘^2 𝑟^4 + 𝑟^10 ) − 1/(2√(𝑘^2 𝑟^4+𝑟^10 )) 𝑑(𝑘^2 𝑟^4+𝑟^10 )/𝑑𝑟 (2𝑟^6 − 𝑘^2 ))/(√(𝑘^2 𝑟^4 + 𝑟^10 ))^2 ] =𝜋[(12𝑟^5 √(𝑘^2 𝑟^4 + 𝑟^10 ) − 1/(2√(𝑘^2 𝑟^4 + 𝑟^10 )) (4𝑘^2 𝑟^3 + 10𝑟^9 )(2𝑟^6 − 𝑘^2 ))/((𝑘^2 𝑟^4 + 𝑟^10 ) )] =𝜋[(12𝑟^5 √(𝑘^2 𝑟^4 + 𝑟^10 ) × √(𝑘^2 𝑟^4 + 𝑟^10 )−(4𝑘^2 𝑟^3 + 10𝑟^9 )(2𝑟^6 − 𝑘^2 ))/(2√(𝑘^2 𝑟^4 + 𝑟^10 ) (𝑘^2 𝑟^4 + 𝑟^10 ) )] =𝜋[(12𝑟^5 (𝑘^2 𝑟^4 + 𝑟^10 )−(4𝑘^2 𝑟^3 + 10𝑟^9 )(2𝑟^6 − 𝑘^2 ))/(2√(𝑘^2 𝑟^4 + 𝑟^10 ) (𝑘^2 𝑟^4 + 𝑟^10 ) )] Putting 𝑘^2=2𝑟^6 =𝜋[(12𝑟^5 ((2𝑟^6 ) 𝑟^4 + 𝑟^10 )−(4(2𝑟^6 ) 𝑟^3 + 10𝑟^9 )(2𝑟^6 − (2𝑟^6 )))/(2√((2𝑟^6)𝑟^4 + 𝑟^10 ) ((2𝑟^6)𝑟^4 + 𝑟^10 ) )] =𝜋[(12𝑟^5 ((2𝑟^6 ) 𝑟^4 + 𝑟^10 )−(4(2𝑟^6 ) 𝑟^3 + 10𝑟^9 )(0))/(2√((2𝑟^6)𝑟^4 + 𝑟^10 ) ((2𝑟^6)𝑟^4 + 𝑟^10 ) )] =𝜋[(12𝑟^5 (2𝑟^10+ 𝑟^10 ) − 0)/(2√(2𝑟^10+ 𝑟^10 ) (2𝑟^10+ 𝑟^10 ) )] =𝜋[(12𝑟^5 (2𝑟^10+ 𝑟^10 ) )/(2√(2𝑟^10+ 𝑟^10 ) (2𝑟^10+ 𝑟^10 ) )] = 𝜋[(12𝑟^5)/(2√(3𝑟^10 )) ] = 𝜋[(12𝑟^5)/(2𝑟^5 √3) ] = 𝜋[6/√3 ] > 0 Therefore, (𝑑^2 𝑠)/(𝑑𝑠^2 )>0 when 𝑘^2=2𝑟^6 S is minimum when 〖 𝑘〗^2=2𝑟^6 Now, ℎ=𝑘/𝑟^2 ℎ𝑟^2=𝑘 (ℎ𝑟^2 )^2=𝑘^2 ℎ^2 𝑟^4=𝑘^2 Putting value of 𝑘^2=2𝑟^6 ℎ^2 𝑟^4=2𝑟^6 ℎ^2=(2𝑟^6)/𝑟^4 ℎ^2=2𝑟^2 ℎ=√(2𝑟^2 ) 𝒉=𝒓√𝟐 Hence altitude equal to √2 times the radius of the base Hence proved
Ex 6.5
Ex 6.5,2
Ex 6.5,3
Ex 6.5,4
Ex 6.5,5 Important
Ex 6.5,6
Ex 6.5,7 Important
Ex 6.5,8
Ex 6.5,9
Ex 6.5,10
Ex 6.5,11 Important
Ex 6.5,12
Ex 6.5,13
Ex 6.5,14
Ex 6.5,15
Ex 6.5,16
Ex 6.5,17
Ex 6.5,18 Important
Ex 6.5,19
Ex 6.5,20 Important
Ex 6.5,21
Ex 6.5,22
Ex 6.5,23 Important
Ex 6.5,24 You are here
Ex 6.5,25
Ex 6.5,26 Important
Ex 6.5,27
Ex 6.5,28 Important
Ex 6.5,29
About the Author