Check sibling questions

      Slide9.JPG

Slide10.JPG
Slide11.JPG Slide12.JPG Slide13.JPG Slide14.JPG Slide15.JPG

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 6.3, 1 (Method 1) Find the maximum and minimum values, if any, of the following functions given by (ii) f (𝑥) = 9𝑥2+12𝑥+2Finding f’(x) f (𝑥)=9𝑥2+12𝑥+2 Diff. w.r.t 𝑥 f’(𝑥)=18𝑥+12 f’(𝑥)=6(3𝑥+2) Putting f’(𝒙)=𝟎 6(3𝑥+2)=0 3𝑥+2=0 3𝑥=−2 𝑥=(−2)/( 3) Hence 𝑥=(−2)/3 is point of minima of f(𝑥) Finding minimum value of f(𝑥) at 𝑥=(−2)/3 f(𝑥)=9𝑥^2+12𝑥+2 Putting 𝑥=(−2)/3 f(𝑥)=9((−2)/3)^2+12((−2)/3)+2=9(4/3)−12(2/3)+2=−2 Thus, Minimum value of f(𝒙)=−𝟐 There is no maximum value Ex 6.3, 1 (Method 2) Find the maximum and minimum values, if any, of the following functions given by (ii) f (𝑥) = 9𝑥2+12𝑥+2Finding f’(𝒙) f (𝑥)=9𝑥2+12𝑥+2 Diff. w.r.t 𝑥 f’(𝑥)=𝑑(9𝑥^2 + 12𝑥 + 2)/𝑑𝑥 f’(𝑥)=18𝑥+12 f’(𝑥)=6(3𝑥+2) Putting f’(𝒙)=𝟎 6(3𝑥+2)=0 3𝑥+2=0 3𝑥=−2 𝑥=(−2)/3 Finding f’’(𝒙) f’(𝑥)= 6(3𝑥+2) Again diff w.r.t 𝑥 f’’(𝑥)=𝑑(6(3𝑥+2))/𝑑𝑥 f’’(𝑥)=6 𝑑(3𝑥 + 2)/𝑑𝑥 f’’(𝑥)=6(3+0) f’’(𝑥)=6(3) f’’(𝑥)=18 So, f’’((−2)/3)=18 Since f’’(𝑥)>0 is for 𝑥=(−2)/3 𝑥=(−2)/3 is point of local minima Finding minimum value Putting 𝑥=(−2)/3 in f(𝑥) f (𝑥)=9𝑥2+12𝑥+2 f ((−2)/3)=9((−2)/3)^2+12((−2)/3)+2 =9(4/9)+12((−2)/3)+2 =4−8+2 =−2 Hence, minimum value = –2 There is no maximum value

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.